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ABSTRACT

The causal nature of evolution is one of the central topics in the philosophy of biology.

The issue concerns whether equations used in evolutionary genetics point to some

causal processes or purely phenomenological patterns. To address this question the pre-

sent article builds well-defined causal models that underlie standard equations in evolu-

tionary genetics. These models are based on minimal and biologically plausible

hypotheses about selection and reproduction, and generate statistics to predict evolu-

tionary changes. The causal reconstruction of the evolutionary principles shows adaptive

evolution as a genuine causal process, where fitness and selection are both causes of

evolution.
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1 Introduction

The causal nature of evolution is one of the central topics in the philosophy of

biology. Is evolution a causal process? Are selection and fitness causes of
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population change? Recent discussions in the literature have given conflicting

answers to these questions. The causal scepticism is motivated by the fact that

most, if not all, principles of evolutionary theory—such as the Price equation

or Fisher’s fundamental theorem of natural selection—are expressed by purely

statistical terms such as variances or covariances. This does not preclude,

however, the possibility that such statistics are products of certain causal

structures. The past few decades have seen the development of a mathematical

framework for studying causal relations and the probability distributions

generated by them (Pearl [2000]; Spirtes et al. [2000]). Using this technique,

the present article shows how the Price equation—one of the ‘fundamental’

principles of evolutionary theory—is generated from causal relationships rep-

resenting selection and reproduction. The derivation provides causal founda-

tions for the standard equations used in evolutionary genetics and establishes

adaptive evolution as a bona fide causal process.

The structure of the article is as follows: After a brief description of the

problem in Section 2, basic notions of causal models are introduced in Section

3. Using this machinery, Section 4 investigates causal models underlying the

Price equation, the breeder’s equation in quantitative genetics, and the one-

locus population genetics system. The resulting models are causal in the sense

that they can be used to predict the consequence of an ideal intervention, and

evolutionary to the extent that they describe or predict changes in population

frequencies induced by selection. The explicit definition of causal structures

brings several philosophical upshots (Section 5). The first corollary is that

selection must be understood as a causal process (a trait affecting fitness),

rather than just an outcome (statistical dependence between the trait and fit-

ness). Second, the causal models give clear-cut answers to the entangled ques-

tions of whether fitness and/or selection cause population change. Applying

the formal intervention calculus (Pearl [2000]; Spirtes et al. [2000]) to the

causal models obtained in Section 4, I will show there are some interventions

on selection and fitness that affect evolutionary outcomes. This result gives an

unequivocal proof that fitness and selection are both genuine causes of

evolution.

One disclaimer before proceeding: this article exclusively focuses on selec-

tion, leaving aside other factors of evolutionary changes such as mutation,

migration, or drift. Exclusion of drift means all distributions should be taken

as population distributions in infinite populations. The causal basis for drift

may be treated on another occasion.

2 The Philosophical Puzzle

Modern mathematical theories of evolution study changes in populations by

state transition functions (Lewontin [1974]; Lloyd [1988]). Such functions
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describe a temporal change in certain features of a population based on its

current state, thereby allowing a prediction of its evolutionary trajectory.

Taking the simplest example, in the two allelic system with no dominance,

where the fitnesses of genotype AA, Aa, and aa are, respectively, 1þ s; 1þ s=2,

and 1, the change in the population frequency, p, of alleles A between two

consecutive generations is given by:1

�p ¼
spð1� pÞ

2ðspþ 1Þ
: ð1Þ

Alternatively, we may be interested in the evolutionary change of a phenotype

rather than of a gene. In quantitative genetics, the between-generation change

in the phenotypic mean Z is given by the breeder’s equation:

�Z ¼ h2S; ð2Þ

where the selection differential, S, is measures the shift in the phenotypic mean

of the parental generation after selection (but before reproduction) and the

heritability, h2, denotes the efficiency of reproduction—that is, how much of

the change induced by selection is passed onto the next generation. Note that

both Equation (1) and Equation (2) describe the dynamics of population fea-

tures (a change in genetic frequencies or the phenotypic mean) based on cer-

tain characteristics of the current population. The importance of such state

transition functions cannot be overstated, for it is these mathematical analyses

that integrated Mendelian genetics and Darwin’s theory of natural selection,

and formed the core part of evolutionary theory after the Modern Synthesis.

On the other hand, however, the algebraic treatments obscure the question

of evolutionary causes. Although successful state transition functions may

give correct or at least acceptable predictions of a future population under

certain conditions, this does not automatically mean they represent causal

processes. For, obviously, transition functions may describe non-causal as

well as causal patterns. One could write down sufficiently predictive models

for planetary motion without knowing the Newtonian mechanics (for exam-

ple, Kepler’s laws). Such models are purely phenomenological, rather than

causal. Thus philosophers have long been concerned with whether the

evolutionary equations mentioned above point to any causal process, and if

so, how.

Elliott Sober ([1984]), for example, argues that the causal contents of an

evolutionary equation are furnished by the ‘source laws’, which estimate or

measure parameters and variables in the equation by empirical means such as

functional analysis. Since such estimates should reflect causal facts about or-

ganisms, Sober claims the whole of evolutionary theory is causal and

1 Throughout this article I assume generations to be discrete and non-overlapping.
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empirical, even if its core equations—what he calls the ‘consequence laws’—

may be purely mathematical.

This view has been vigorously challenged recently by a group of

philosophers called statisticalists (Matthen and Ariew [2002], [2005], [2009];

Walsh et al. [2002]; Walsh [2007], [2010]; Matthen [2010]), who argue that

the quantities appearing in evolutionary equations, especially fitness, cannot

be estimated by Sober’s source laws or any other causal analysis of a similar

kind, but only by census. Decoupling evolutionary equations from

underlying mechanisms, the statisticalists insist that modern genetics gives

a purely phenomenological description of the statistical trends of a

population, or in their words, ‘explains the changes in the statistical structure

of a population by appeal to statistical phenomena’ (Walsh et al. [2002],

p. 471).

Parallel to this issue—whether evolutionary theory describes a causal

process or not—is the question of whether its key concepts, most notably

fitness and selection, identify causes of evolutionary change. Millstein

([2006]), for example, argues that selection is a population-level cause of evo-

lution, while Matthen and Ariew ([2009]) and Lewens ([2010]) deny any causal

power to selection. Walsh ([2007], [2010]) claims that fitness is causally inert

since it fails to satisfy certain criteria of causality, while this argument was

criticized by Otsuka et al. ([2011]). Sober ([2013]), finally, argues that fitness

itself does not cause population change, but its variance does. Although the

reasonings behind these claims vary, they all base at least some portion of their

argument on the manipulationist notion of causation (Woodward [2003]).

That is, both parties seem to agree that fitness and selection are causal if

and only if manipulating them affects evolutionary response.

But how do we know the consequence of such manipulations? To examine

this, most (but not all) of these authors resort to conceptual analysis: what

really are fitness and selection? What do they stand for? With a certain inter-

pretation of these concepts, they go on to argue that the supposed manipula-

tion should (or should not) affect evolution, and thus that the concepts must

(or must not) be causal.

This, to say the least, is a very peculiar move. In the manipulationist frame-

work, the outcome of a possible intervention is not determined by the meaning

of variables, but their relationships. Woodward’s example (Woodward [2003],

p. 197) makes it clear: It is known that the period, T, of a simple pendulum is

related to its length, l, by

T ¼ 2p
ffiffiffiffiffiffiffi
l=g

p
; ð3Þ

where g is the acceleration due to gravity. It seems natural to read this equa-

tion causally, to the effect that the right-hand side (the length and gravity)
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determines or ‘causes’ the left hand side (the period), until we find that

Equation (3) is mathematically equivalent to the following:

l ¼
T2g

4p2
: ð4Þ

Now it is obviously absurd to claim, based on this new equation, that the

period causes the length of the pendulum. What determines the (il)legitimacy

of the causal reading of each equation? Surely not the meanings of the vari-

ables, for they stay the same in both equations.

The moral of this simple example is that the conceptual analysis is utterly

irrelevant to the investigation of the causal nature of some concept under the

manipulationist framework. Sober ([2013]) resorts to the breeder’s equation

(Equation (2)) to make his case that the fitness variation, measured by the

term S on the right-hand side, affects the response to selection in the left-hand

side. But this begs the question. How do we know the breeder’s equation

correctly captures the causal flow? Why isn’t it like Equation (4), rather

than Equation (3)?2 We never know, until the causal relationships among

the variables are explicitly specified beforehand. Such relations are usually

given by a causal model, which also determines a set of equations that

allow for causal reading (Pearl [2000]; Spirtes et al. [2000]). It is the causal

model given by the Newtonian mechanics that authorizes the causal

reading of Equation (3), but not of Equation (4). In the same way, if we

want to know the effect of intervening on some variable in an evolutionary

formula, we need the causal model underlying that equation. Hence the

second contention—whether fitness or selection causes evolution—hinges

on the first: are there causal models underlying evolutionary transition

functions?

The answer is yes. This article describes causal models that (1) include

the relevant variables such as genetic, phenotypic, and environmental factors,

(2) generate the statistics necessary to describe and predict evolutionary

trajectories, and (3) can be used to predict the consequence of a possible

intervention on an evolving population. The derived models will reveal the

causal foundations underlying the evolutionary transition functions as

described above (Equations (1) and (2)), and help us to determine whether

fitness and selection can be properly regarded as causes of evolutionary

change.

2 In the breeder’s equation, the evolutionary response cannot precede fitness variance, and hence

cannot be its cause. But they may be effects of a common cause, or, as statisticalists may argue,

the relation may be ‘purely statistical’. In fact, we will later see that, pace Sober, a manipulation

of the fitness variance does not affect the expected evolutionary response predicted by the

breeder’s equation.
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3 Causal Models

A causal model employs a graphical structure to represent causal relationships

among variables (Pearl [2000]; Spirtes et al. [2000]). A causal graph G ¼ ðV;EÞ

is a pair comprising a set of variables V (or nodes) and a set of edges

E � V� V. An edge ðX ;Y Þ 2 E, or more graphically X!Y , represents a

direct causal relation from X to Y, where X is called a parent of Y and Y a

child of X. A path between X and Y is any chain of edges between X and Y,

where a path can follow arrows in either the direction of the arrow or the

reverse direction. If every arrow in a path between X and Y is pointing towards

Y, it is called a directed path from X to Y, and then X is a cause of Y and Y is

an effect of X. A bidirected edge X $ Y represents unmodelled association

between X and Y—that is, the association not accounted for by any causal

path in the graph. In this article, such edges are allowed only between those

variables having no causes/parents (called exogenous).

It is assumed that the value of each variable Vj 2 V is determined by its

direct causes or parents PAðVjÞ such that

Vj ¼ fjðPAðVjÞÞ: ð5Þ

This is called the structural equation for Vj. When the relationship is linear, as

assumed throughout this article, Equation (5) can be expressed as

Vj ¼
X

Vi2PAðVj Þ

�jiVi; ð6Þ

with a set of linear coefficients b (also called path coefficients). Hence, in a

linear causal model each directed edge in the graph is associated with one

linear coefficient.

A causal graph G over V, a set of corresponding structural equations F, and

a probability distribution P over the exogenous variables in V uniquely de-

termine the joint distribution over V. The induced distribution satisfies useful

properties such as the Markov Condition (Pearl [1988]). Another feature of

our interest is the trek rule (Wright [1921]). A trek between variables X and Y

is a path between them that does not contain a collider where two arrows

on the path collide at one variable (for example,!V ). A trek is equivalent

to a pair of directed paths that share the same source or whose separate

sources are connected by a bidirected edge.3 Thus in Figure 1,

X1!X3!X5; X3 X2!X4, and X5 X3 X1 $ X2!X4!X5 are ex-

amples of treks, whereas X3!X5  X4 is not. For each trek, we can calculate

the trek coefficient by multiplying the (co)variance of its source(s) and all the

linear coefficients on the edges constituting the trek. The trek rule states that

3 Note that one of the pair may be empty. Thus one directed path from X to Y counts as a trek

between them.
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the covariance of two variables equals the sum of trek coefficients over all the

treks connecting them. That is, if T is the set of all the treks between X and Y,

and �ti is the linear coefficient of the ith edge on t 2 T,

CovðX ;Y Þ ¼
X
t2T

st

Y
i2t

�ti; ð7Þ

where �t is the (co)variance of the source(s) of trek t. To take some examples

from Figure 1, CovðX1;X4Þ ¼ CovðX1;X2Þc; CovðX3;X4Þ ¼ CovðX1;X2Þacþ

VarðX2Þbc, and CovðX3;X5Þ ¼ VarðX3Þd þ CovðX1;X2Þaceþ VarðX2Þbce.

Causal models thus give formal tools to study the relationships between a

causal structure and the probability distribution generated by it. The next sec-

tion makes use of these tools to explore causal bases of evolutionary equations.

4 Causal Foundations of Evolutionary Genetics

In evolutionary genetics, it is well known that a change in moments (for

example, mean) of a population from one generation to the next is completely

described by the Price equation (Robertson [1966]; Price [1970]). Let Z be the

trait of interest, W be the Darwinian fitness as defined by the number of

offspring, and Z0 be the average phenotype of offspring of each individual.

Thus if George, who reproduces asexually, has four children each having

the phenotypic value of 1, 1, 1, and 2, then wGeorge ¼ 4 and z0George ¼

ð1þ 1þ 1þ 2Þ=4 ¼ 1:25.4 The Price equation gives the difference, �Z , of

mean phenotypic values between the parental generation and the offspring

generation by

�Z ¼
1

W
CovðW ;Z0Þ þ Z

0
� Z; ð8Þ

where the upper bars denote the means. The first term of the equation is the

covariance of the fitness and the averaged offspring phenotype, and thus re-

flects both selection and reproduction. The second and third terms, in con-

trast, compare the phenotype of parents and the averaged phenotypic value of

their offspring, regardless of the fitness of the parents. A difference in these

Figure 1. An example of a causal graph with path coefficients.

4 Throughout this article, random variables are denoted by uppercase letters while their values are

denoted by lowercase letters. Boldface is used for sets, vectors, and matrices.
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terms, therefore, implies a transmission bias.5 In this article I will assume

transmission bias to be absent, in which cases evolutionary dynamics is

described just by the first term.

Before moving on, let us emphasize that the variables used in the Price equa-

tion, including fitness W, are all properties of an individual (or of a pair of

individuals for diploid organisms, as we will see later). Alternatively the concept

of fitness is sometimes used to refer to a property of types, for example, pheno-

type, genotype, haplotype, or an allele. Such type-level fitnesses are called mar-

ginal fitness and defined by the conditional distribution PðW jT ¼ tÞ or its mean

for a given type, t. But what we denote by ‘fitness’ in this article is primarily a

property of an individual.6 The Price equation thus gives population change,

�Z , as a statistical function of these individual variables.

A remarkable feature of the Price equation is that it is a mathematical

theorem and thus holds true of any evolving population. This has motivated

the view that the core evolutionary principles are a priori truths (for example,

Sober [1993], p. 72) and at the same time generated the philosophical puzzle as

to how such non-empirical theorems can represent causal processes in the real

world. Indeed, Price’s theorem does not tell us how the variables in the equa-

tion affect each other or what will happen if one of them is altered by some

external means—or in other words, it does not explain why evolution takes

place in that way. As we saw in Section 2, answering these questions requires a

suitable causal model beyond a mere mathematical equation.

The goal of this section is to find such causal foundations for evolutionary

change represented by the Price equation. Our strategy is to build causal models

(that is, specify causal graphs and structural equations) representing evolution-

ary processes and then show that such models indeed generate the Price covari-

ance, CovðW ;Z0Þ. This will give us evolutionary state transition functions that

have a definite causal basis and describe evolutionary changes in terms of causal

parameters. I will show this for phenotypic evolution first, and then consider the

population genetics model.

4.1 Univariate quantitative genetics model

4.1.1 The causal graph

Evolution by natural selection consists of two parts: selection and reproduc-

tion. Let us take reproduction first. Reproduction is a process that links the

5 This ‘transmission bias’, however, may include selection at lower levels (such as genic selection

for ‘selfish genes’) and effects of non-genetic inheritance (such as maternal effects).
6 Some statisticalists (for example, Pigliucci and Kaplan [2006]) seem to interpret fitness to be a

population level feature—that is, as a random variable or the expectation thereof defined over a

set of populations—but no such use of the concept is warranted by the evolutionary literature.

See (De Jong [1994]) for a discussion of various concepts of fitness.
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phenotype of parents with the phenotype of offspring through genes or epi-

genetic materials. Thus a causal model for reproduction must specify how a

phenotype is formed out of these factors and how they are transmitted from

parent to offspring. Obviously there are many possible reproductive struc-

tures, but here we confine ourselves to a very simple case of purely

Mendelian inheritance.

Suppose there are n different types of alleles segregating in a population.7

Then the genotype of an organism is characterized by a set (vector) of n vari-

ables X :¼ ðX1;X2; . . . ;XnÞ, where Xi 2 X is the gene content, that is, the

count of copies of the ith allele type in an individual (Lynch and Walsh

[1998], p. 65). For a haploid organism, the value xi of Xi for any i can be

either 0 or 1, while for diploids xi 2 f0; 1; 2g.

Parental phenotype Z is made out of these genes as well as of an environ-

mental factor denoted by EZ. We thus have edges drawn from EZ and each of

X to Z. These genes are then transmitted to offspring, following the causal

edge from parental to offspring gene contents, Xi!X 0i, for each i. Finally, we

assume the same developmental process for offspring phenotype, Z0 being

caused by X0 and E0Z.

The above construction gives the causal graph for reproduction as shown in

Figure 2 (the path coefficients in the graph will be explained shortly). The

graph, however, makes further assumptions not mentioned above. First,

bidirected edges between parental genes represent genetic correlations already

present in the population. Such correlations can arise in two ways: gene counts

of the same locus are necessarily correlated for they must sum up to the ploidy

of the organism, while inter-locus correlations, often called ‘linkage disequi-

librium’ or ‘gametic phase disequilibrium’ arise due to various factors includ-

ing previous selection, drift, or non-random mating.8 In contrast, it is assumed

that environment EZ is not correlated with any genes, as implied by the ab-

sence of bidirected edges between X 2 X and EZ. The graph also presupposes

that parental environment EZ has no causal influence on, or correlation with,

offspring environment E0Z. Finally, transmission is strictly Mendelian in the

sense that each gene is inherited independently, without affecting the trans-

mission process of other genes—this excludes segregation distortion.

We now move to the second part, selection. Selection is the process in which

parental phenotypes lead to differential reproductive success. We say that trait

Z is selected if and only if it, along with an environmental factor denoted by

7 In standard treatments these n allele types are partitioned into a set of loci. The partition

becomes necessary in order to distinguish two types of genetic interactions: dominance and

epistasis. But here we ignore this because the breeder’s equation does not consider any

non-linear genetic interactions.
8 These empirical covariances can be seen as a dependency due to a selection bias.
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EW, causally affects fitness W (for example, Glymour [2011]).9 This means that

in order for Z to be selected there must be some intervention on Z, at least as a

possibility, that changes fitness W. Selection can thus be represented in Figure

2 by adding edges Z!W and EW!W .

A slight complication arises, however, for diploid organisms that do not

produce offspring by themselves but only by a pair. It follows that the proper

unit for analysing diploid evolution is a male and female pair. For a given pair,

let us denote the phenotypes of the female and the male by ZF and ZM, and

their gene contents by XF and XM , respectively. Fitness, W, of the pair is the

number of offspring produced by that pair, and has ZF and ZM (and EW) as its

direct causes. Likewise, Z0 and X0 are redefined to be the average phenotypic

value and gene contents of the offspring of that pair, respectively.

With these modifications, the overall causal graph that incorporates selec-

tion and reproduction of diploid organisms should look like Figure 3, where

each branch in the middle (the mother and the father) is an abbreviated rep-

resentation of the reproductive causal model represented in Figure 2. As

before, this graph introduces additional assumptions. First, the environment

factors affecting fitness (EWM
and EWF

) must be uncorrelated with phenotypes

or genotypes, as implied by the absence of edges between them. Another

Figure 2. Linear (additive) decomposition of the covariance between parental and

offspring traits. Bold arrows illustrate an example of a trek connecting Z and Z0,

whose contribution to the covariance is �iCovðXi;XjÞ �
1
2
� �j . See the main text for

the explanation of the variables.

9 I will discuss in Section 5.1 why selection must be defined as a causal process, not just a statistical

dependence.
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assumption is random mating; non-random mating would introduce bidir-

ected edges between corresponding elements in XM and XF .

Although minimal and even simplistic, Figures 2 and 3 submit a biologically

reasonable hypothesis of the causal structure underlying selection and repro-

duction. It specifies causal links among relevant variables in such a way that

we can identify which part of the system would be affected if some of them

were manipulated by an external means. It is not yet clear, however, how this

causal structure over individual organisms relates to the population changes

as described by evolutionary transition functions. To see this relation, we need

to quantify each causal relationship appearing in the graph, the task to which

we now turn.

4.1.2 Structural equations

Compared to the causal graph, there is much less, if any, a priori reason for

determining the functional form for a given causal relationship. How a cause

contributes to its effects is largely an empirical matter that depends on their

nature and circumstance. As a first approximation, however, I assume in this

article that every cause acts additively. This means that selection is purely

Figure 3. The causal graph showing the connections between parental fitness, W,

and offspring trait, Z0. Boldface letters denote multiple nodes or coefficients, for

example, XM :¼ ðXM1
;XM2

; . . . ;XMn
Þ, and each side abbreviates the structure

shown in Figure 2. Environmental factors for phenotypes EZM
;EZF

, and E0Z are

omitted from the graph.
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directional and there is no dominance or epistasis. Non-linear structural equa-

tions are possible in theory but complicate the mathematical derivation; more

important for our purpose, they are outside the scope of the standard equa-

tions of evolutionary genetics mentioned above and this article, since provid-

ing the causal structures for these equations is the primary goal of this article.

In linear/directional selection, a unit change in the phenotype affects the

fitness by the amount specified by the path coefficient �, so that

W ¼ �Z þ EW : ð9Þ

We further assume the selection pressures to be the same for male and—that

is, ZF and ZM have the same path coefficient with respect to W.

For the genotype–phenotype mapping, we assume each allele, Xi linearly

affects the phenotype by coefficient �i:

Z ¼
X
Xi2X

�iXi þ EZ

¼ aXT þ EZ;

ð10Þ

where a ¼ ð�1; �2; . . . ; �nÞ and T denotes matrix transpose. �i is called the

‘additive effect’ and measures the change in the phenotype induced by

adding one copy of the ith allele, say from Xi¼ 0 to Xi¼ 1 (Fisher [1930/

2006], p. 31). It is assumed that additive effects are the same for all individuals

in the population. Hence Equation (10) characterizes the genotype–phenotype

mapping of females, males, and offspring.

Under diploid Mendelian inheritance (e.g. no segregation distortion), every

gene in a parent has a half-chance to get inherited. Hence, the structural

equation representing the genetic transmission is simply

X0 ¼
1

2
X: ð11Þ

Equations (9) to (11) constitute the structural equations corresponding to

the causal graph Figures 2 and 3, as indicated by the path coefficients on

edges. Together with the graphs, they tell us how a unit alteration in any

variable in the model brings about changes in other parts—that is, they give

predictions of effects resulting from a possible intervention. This completes

the description of a causal model for a single quantitative trait.

4.1.3 Deriving evolutionary transition functions

The final step employs the trek rule to obtain evolutionary transition functions

based on the causal model as defined above. Recall that, according to the trek

rule the Price covariance CovðW ;Z0Þ is given by the sum of trek coefficients

between W and Z0. From Figures 2 and 3, each trek connecting W and Z0 has
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the form either of W Z Xi!X 0i!Z0 or of W Z Xi $ Xj !X 0j!Z0,

the trek coefficient of each being ��iCovðXi;XjÞ �
1
2
� �j for Xi;Xj 2 X.

Summing all these treks for each side of the two parents yields

�Z ¼
1

W
CovðW ;Z0Þ

¼
2

W
�
X
Xi2X

X
Xj2X

�iCovðXi;XjÞ �
1

2
� �j

¼
1

W
�aVarðXÞaT;

ð12Þ

where VarðXÞ is the covariances of gene contents and is a function of population

genetic frequencies. Hence Equation (12) relates phenotypic change to causal

parameters (� and a), as well as a distributional feature of the exogenous vari-

ables (VarðXÞ), giving a causal underpinning of evolutionary change.

The same model also reveals the causal basis of the standard formula of

quantitative genetics, the breeder’s equation (Equation (2)). To see this, let us

first derive the additive genetic variance, s2
A, which is defined as the part of the

phenotypic variance due to the additive effects of gene contents X. Since the

variance is nothing but the covariance of a variable with itself, we can apply

the trek rule to calculate this value. Noting in Figure 2 that all treks connecting

Z to itself have the form Z Xi $ Xj!Z with the trek coefficient

�iCovðXi;XjÞ�j , the additive genetic variance for Z is

s2
A ¼

X
Xi2X

X
Xj2X

�iCovðXi;XjÞ�j

¼ aVarðXÞaT:

ð13Þ

Plugging this into Equation (12) yields

�Z ¼
1

W
�s2

A: ð14Þ

From standard regression theory, the least squares estimate of linear coeffi-

cient � is CovðW ;ZÞ=VarðZÞ. Letting eW :¼W=W denote the relative fitness,

we get

�Z ¼
1

W

CovðW ;ZÞ

VarðZÞ
s2

A

¼ CovðeW ;ZÞ
s2

A

VarðZÞ

¼ Sh2;

ð15Þ

where S :¼ CovðeW ;ZÞ is the selection differential and h2 :¼ s2
A=VarðZÞ is the

(narrow-sense) ‘heritability’. The breeder’s Equation (2) (and Equation (15)),

Causal Foundations of Evolutionary Genetics 259

 at K
obe U

niversity on February 21, 2016
http://bjps.oxfordjournals.org/

D
ow

nloaded from
 

http://bjps.oxfordjournals.org/


therefore, is an estimate of the linear evolutionary response generated by the

causal structure in Figures 2 and 3. We can thus conclude that the graph and

model specified above represent the causal foundation of the standard evolu-

tionary formula in quantitative genetics.10

4.2 One-locus population genetics model

The same method can be used to build the causal model for the simple popu-

lation genetics model as in Equation (1), if one thinks of a gene as a kind of

phenotype. Let A and a be two alleles segregating at one locus with the allelic

frequencies p and 1� p, respectively. Gene contents X1 and X2 then are counts

of allele(s) of A and a in an organism. Let us define our ‘phenotype’ Z to be the

frequency of allele A in one organism. Hence, for diploid organisms Z ¼ X1=2

and its value can be either 0, 0.5, or 1. Noting that the population frequency of

allele A equals Z , its change is given by the Price equation:

�p ¼ �Z ¼
1

W
CovðW ;Z0Þ: ð16Þ

Here again we ignore the transmission bias and assume that genes are passed

to offspring more or less directly.

The causal graph connecting the relevant variables for a pair of organisms is

shown in Figure 4. The non-directed edges in the graph represent the unit

conversion between the gene count (X) and the gene frequency (Z) in an in-

dividual. Since these two variables point to the same thing, the causal flows

remain undisrupted and the trek rule is still applicable. In the graph there are

only two treks connecting W and Z0, that is, W ZM � XM1!X 01!Z0 and

W ZF � XF1!X 01!Z0. Assuming selection acts on each sex equally, that

is, sF¼ sM¼ s, the trek sum is

1

W
CovðW ;Z0Þ ¼

1

4W
sVarðX1Þ

¼
spð1� pÞ

2W
;

ð17Þ

where the second line follows from the fact that the variance of the multi-

nomial random variable X1 is 2pð1� pÞ. Under no dominance, the mean fit-

ness W is p2ð1þ sÞ þ 2pð1� pÞð1þ s=2Þ þ ð1� pÞ2 ¼ spþ 1, giving

�p ¼
1

W
CovðW ;Z0Þ ¼

spð1� pÞ

2ðspþ 1Þ
; ð18Þ

10 In the same fashion one can derive the multivariate version of the breeder’s equation—the

‘Lande equation’ (Lande [1979])—which plays the central role in today’s quantitative genetics

(Otsuka [2014]).
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which accords with Equation (1). In general, plugging regression estimate

ŝ ¼ CovðW ;ZÞ=VarðZÞ into Equation (17) yields the standard one-locus

population genetics model (Gillespie [2004], p. 62):

�p ¼
pð1� pÞ½pðwAA � wAaÞ þ ð1� pÞðwAa � waaÞ�

W
; ð19Þ

where wAA, wAa, and waa are the marginal fitnesses of genotypes AA, Aa, and

aa, respectively. The state transition functions of population genetics can

hence be derived from the Price equation and the underlying causal model

in the same fashion as in quantitative genetics.

5 Evolution as a Causal Process

The causal decompositions of the Price covariance given above reveal the

causal structures underlying the evolutionary state transition functions and

hence the evolutionary phenomena they describe. Our causal models satisfy all

three desiderata mentioned earlier: they relate relevant genetic, phenotypic,

and environmental factors; they give predictions of evolutionary conse-

quences; and they can be used to estimate the effect of possible interventions

on a subset of the variables. In addition to providing the causal foundations,

the philosophical importance of defining the formal model is two-fold. First, it

Figure 4. The causal graph for the one-locus population genetics system. Non-

directed edges represent mathematical relations (change of units). Variable X2 is

omitted since the gene content of allele a does not affect Zs.
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tells us what selection must be in order for it to yield evolutionary change.

Second, the explicit definition of the causal model makes it possible to deter-

mine whether fitness and/or selection cause evolution. These points are

discussed in turn.

5.1 Selection as a causal process

All the causal models derived above required a trait to be a cause of fitness,

favouring the notion of selection as a causal process (Millstein [2002], [2006];

Stephens [2004]), rather than a mere outcome (Matthen and Ariew [2009];

Matthen [2010]). The outcome interpretation claims that selection is nothing

but a statistical fact holding in a population, such as the fitness variance or the

fitness-trait covariance. At first sight such a view fits well with the popular

accounts of selection, including Richard Lewontin’s much-cited summary of

Darwinian evolution as a necessary consequence of three conditions, pheno-

typic variation, differential fitness, and heritability, where differential fitness—

that is, selection—means that ‘different phenotypes have different rates of sur-

vival and reproduction in different environments’ (Lewontin [1970], p. 1). In

other words, phenotypes are correlated with fitness.

Our causal model, however, reveals an inadequacy of the purely statistical

interpretation of adaptive evolution. To see this, imagine a situation where a

trait does not cause fitness but both are affected by some common cause

(Figure 5). Rausher ([1992]), for example, considers a hypothetical plant

population whose foliar alkaloid concentration (phenotype) and seed produc-

tion (fitness) are affected by the nitrate level of the soil environment (see

also (Mauricio and Mojonniner [1997]; Morrissey et al. ([2010]) for similar

discussions). The environmental confounder in such a situation will generate a

statistical association between the trait and the fitness, so that Lewontin’s

criteria are satisfied, provided the trait is heritable. Evolutionary response,

Figure 5. When the phenotype-fitness association is due only to a common cause,

CovðW ;Z0Þ ¼ 0 and no evolutionary response follows. But even in such cases,

Lewontin’s three conditions are satisfied and we may (falsely) assume a non-zero

evolutionary response. Note that the path W  E!Z � � �!Z0 collides at Z and

is not a trek. The dashed bidirected arrow represents reproductive pathways.
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however, does not ensue for there is no trek between W and Z0, and thus the

Price covariance is zero. This simple example shows why the interpretation of

selection as a pure outcome, as well as Lewontin’s well-known formulation, is

defective.11 A mere statistical fact by itself has no explanatory role in the study

of adaptive evolution.

The importance of distinguishing the selection-as-process from its statistical

outcome cannot be emphasized too much. In a recent article, Sober ([2013])

correctly observed that fitness differences with respect to some trait Zi do not

entail a selection for Zi itself, but wrongly concluded that they entail a selection

for another trait Zj that correlates with Zi. It doesn’t, since the phenotype–

fitness association may be purely spurious, and in such cases there would be

no evolutionary change. A mere statistical association between the trait and

fitness itself does not imply any form of adaptive response; only selection-

as-process does.

5.2 Causes of evolutionary change

Another contention in the statisticalist debate is whether fitness and/or selec-

tion can be regarded as a cause of evolutionary change (Stephens [2004];

Millstein [2006]; Otsuka et al. [2011]; Sober [2013]) or not (Matthen and

Ariew [2002], [2009]; Walsh et al. [2002]; Walsh [2007], [2010]). The causal

models provide a clear-cut solution to this entangled debate. Under the

manipulationist account of causation, C is a cause of E if there is some inter-

vention on C that alters the distribution of E (Woodward [2003]). In the same

vein fitness is a cause of evolution if an intervention on W affects evolutionary

response �Z . This can be easily verified by applying the standard intervention

calculus (Pearl [2000]; Spirtes et al. [2000]) to the causal models defined above.

The post-intervention distribution can be represented by Pð�Z jdoðW ¼ wÞÞ

where doð•Þ is Pearl’s intervention operator that sets the fitness value to w. This

amounts to forcing every individual in the population to have a certain number

of offspring by some external means (for example, by culling all cubs after the

wth birth). Alternatively, one can think of partial interventions that affect only

some portion of the population. Assuming no individual gets more than one

intervention, the result of partial interventions is given by the weighted average

Pð�Z j�Þ ¼
Xj�j

i

ni

N
Pð�Z jdoðoiÞÞ; ð20Þ

11 Note that the case advanced here is to be distinguished from other criticisms of Lewontin’s

conditions, such as exact cancellation of selective force by other pathways (Wimsatt [1980a],

[1980b]; Okasha [2007]), or an incidental trait–fitness correlation in a small population (Brandon

[1990]). Lewontin’s conditions may fail even in an infinite population undergoing no opposing

evolutionary forces.
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where � :¼ fdoðo1Þ; doðo2Þ; . . .g is a set of partial interventions, N is the popu-

lation size, and ni is the number of individuals affected by doðoiÞ. The standard

intervention captured by Pearl’s do calculus is just a special case of Equation

(20) where � is a singleton. Here we consider only the standard ones. Our

question thus amounts to whether Pð�Z jdoðW ¼ wÞÞ 6¼ Pð�Z jdoðW ¼ w0ÞÞ

for some w 6¼ w0.

So does an intervention on fitness affect evolution? It depends on the type of

intervention. An intervention in a causal model is usually represented as a

modification of the graph and/or the structural equations. ‘Hard interven-

tions’ eliminate all the causal inputs to the target variables and impose a new

set of values or distribution by some external force. In Figure 3, a hard inter-

vention on fitness amounts to pruning all incoming arrows to W. This effect-

ively interrupts all the treks from W to Z0 so that the Price covariance becomes

zero, that is, there is no evolutionary response. We thus conclude that hard

interventions on W do not induce evolutionary change. This should not sur-

prise us, for it is just a population-level restatement of Weismann’s principle

that no epigenetic surgery on parents would affect offspring phenotype. One

can easily check that under the standard model this holds true for any pheno-

type, that is, Pð�Z jdoðZ ¼ zÞÞ ¼ Pð�Z jdoðZ ¼ z0ÞÞ for any hard intervention

on Z.

From another perspective, however, this may appear puzzling: isn’t artifi-

cial selection conducted by breeders a mixture of partial hard interventions?

And we know that their efforts have considerably improved a number of

phenotypes of economic importance, such as cows in terms of their milk

yield. In these planned breedings, however, the intervention is a function of

the phenotype: the breeder decides how many offspring an animal can have

based on its phenotype. This effectively creates a new causal path from Z to

W, that is, another selective pressure that leads to adaptive response. But

unless the process itself is determined by the phenotype, hard interventions

do not affect an evolutionary outcome.

Not all interventions are hard. ‘Soft interventions’ preserve some of the

original causes of the target variable but modify its distribution, usually by

adding another cause (Eberhardt [2007]). For example, suppose we want to

know whether students’ economic situation affects their academic perform-

ance. For this purpose, we may provide some financial aid or scholarship in

order to see how this alters their exam scores. With respect to fitness, a soft

intervention may be carried out through some form of environmental scaf-

folding (for example, additional food or provision of a nesting place), which is

neither correlated with the focal phenotype nor interferes with its effect on the

fitness. Such an independent additive intervention does not change the Price

covariance, but does affect evolutionary responses through the mean fitness

W , the weighting factor in the Price Equation (8). If we boost fitness by
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additive factor �, the post-intervention mean fitness becomes W 0 ¼W þ �,

which results in a slower response to selection. In general, additive soft inter-

ventions on fitness conserve the direction but affect the rate of adaptive

evolution.

Thus, there are some interventions on fitness that cause evolution. But it is

important to note that not all interventions, even soft ones, induce population

change. For example, if we manipulate only the variance of fitness by adding

some noise factor with mean zero or by changing VarðEW Þ, these interventions

will not affect either the Price covariance or the weighting factor 1=W . Hence,

contrary to Sober’s ([2013]) claim, the fitness variance does not cause evolu-

tionary change, at least in case of directional selection.12

Finally, let us consider whether selection causes evolution. Selection, as

discussed above, is a causal influence of the trait on fitness, whose linear

magnitude is measured by coefficient � (Section 4.1). This parameter, in

turn, should depend on selective environments including biotic (for example,

prey abundance) as well as abiotic (for example, temperature) factors (Wade

and Kalisz [1990]). Intervening on the selection-as-process thus amounts to a

modification of these fitness-related factors controlling �. Since the Price co-

variance and the mean fitness are functions of � (Equation (12)), such inter-

ventions clearly make a difference in adaptive response. In general, we have

Pð�Z jdoð�ÞÞ 6¼ Pð�Z jdoð�0ÞÞ;

for any � 6¼ �0. It thus follows that selection does cause evolution.

To sum up: There are some interventions, either on fitness or on selection,

that affect evolutionary response. Therefore, pace statisticalists, the causal

model makes it clear that fitness and selection do cause evolution. But not

every intervention will do. Hard interventions on fitness or manipulations of

the fitness variance usually do not induce linear adaptive response. Let us

emphasize that these conclusions were reached only with the aid of the

causal models underlying the evolutionary formulae. A well-defined causal

model gives an unequivocal answer to the question: ‘does X cause Y?’.

Purely conceptual analyses or interpretations of the putative cause, in con-

trast, never settle the issue.

6 Conclusion

In the history of evolutionary genetics, most of its celebrated principles have

been formulated in probabilistic terms. The Price equation and Lewontin’s

12 If selection is acting on higher moments, as in stabilizing or disruptive selection, the fitness

variance does matter to evolutionary change. Also, in a finite population the magnitude of drift

is a function of the fitness variance. Sober’s ([2013]) argument, however, focuses just on the

linear adaptive response (that is, the breeder’s equation).

Causal Foundations of Evolutionary Genetics 265

 at K
obe U

niversity on February 21, 2016
http://bjps.oxfordjournals.org/

D
ow

nloaded from
 

http://bjps.oxfordjournals.org/


conditions for evolution by natural selection both characterize evolution in

terms of statistical, but not causal, features of a population. This gave rise to

the philosophical puzzle as to whether evolution, described by these prin-

ciples, is a causal process. The puzzle divided philosophers into two camps,

but both sides seem to have accepted the statistical formulae as given and

even admitted that the fundamental principles in evolutionary genetics are

by nature non-causal or non-empirical. This presumption, however, is incor-

rect. As shown in this article, these evolutionary principles are derived from

certain causal models, and in this sense not fundamental at all. What are really

at the base of population change are the causal processes generating these

statistics.

Like in many other cases, philosophers’ modus operandi in this debate has

been conceptual analysis. That is, the causal nature of selection or fitness was

expected to be clarified by the correct interpretation of these concepts. To the

eyes of these philosophers, the approach taken in this article may appear

unfamiliar or even irrelevant. On the contrary, I argue that it is the only

way to solve the issue: whether one variable causes another is answered not

by interpreting these properties, but by specifying a causal model relating

them. Once such a causal model is laid out, the answer follows quite

straightforwardly.

In so arguing, I by no means pretend that the above models give the only

causal structures underlying adaptive evolution; they are just a few—arguably

the simplest—among many other possibilities. Nor am I trying to improve the

predictive ability or performance of the standard evolutionary equations. My

goal in this article was purely foundational, namely, to provide causal bases

for the existing evolutionary formulae; no more, no less. A formal definition of

the underlying causal model, however, proves useful in examining implicit

assumptions and/or limitations of an evolutionary equation, for the graphical

representation makes all the causal assumptions explicit. Figure 3 tells us, for

example, that in order to apply the breeder’s equation, the phenotype must

cause fitness (a mere correlation is not sufficient), that its prediction eventually

depends on the genotypic distribution (hence that the response may change

across generations), and so on. The basic causal models constructed in this

article also provide bases for more complex evolutionary phenomena, such as

epigenetic inheritance or niche construction. These ‘non-standard’ mechan-

isms not covered by the traditional models introduce additional causal con-

nections in the graph, whose impact on evolution can be directly evaluated

through the method used in this article (Otsuka [2015]).

In sum, causal modelling provides a promising framework with which to

approach a number of scientific, as well as philosophical, issues in evolution.

Although its history dates back to Sewall Wright ([1921]), the technique has

not received much attention either from biologists or philosophers until fairly
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recently (for example, Shipley [2000], [2010]; Glymour [2006]). Exploring its

possibilities and limitations will be important tasks for the future.
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