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Abstract

The evolutionary potential of organisms depends on how their parts are

structured into a cohesive whole. A major obstacle for empirical studies of

phenotypic organization is that observed associations among characters usu-

ally confound different causal pathways such as pleiotropic modules, inter-

phenotypic causal relationships and environmental effects. The present

article proposes causal search algorithms as a new tool to distinguish these

different modes of phenotypic integration. Without assuming an a priori

structure, the algorithms seek a class of causal hypotheses consistent with

independence relationships holding in observational data. The technique

can be applied to discover causal relationships among a set of measured

traits and to distinguish genuine selection from spurious correlations. The

former application is illustrated with a biological data set of rat morphologi-

cal measurements previously analysed by Cheverud et al. (Evolution 1983,

37, 895).

Introduction

The variational properties and evolutionary potential of

phenotypic characters are largely determined by the

underlying developmental mechanism. Darwin, in his

discussion on ‘correlation of growth’, has emphasized

that causal connections among distinct traits influence

and sometimes constrain evolutionary changes. In the

quantitative genetics literature, the study of constraints

on adaptive evolution has focused on the additive

genetic covariance matrix (the G matrix) of the Lande

equation D�z = Gb (Lande, 1979). In particular, eigen-

vectors of G associated with large eigenvalues are inter-

preted to represent directions to which adaptive

response is less constrained (Arnold et al., 2001; Blows

& Hoffmann, 2005; Blows, 2007; Walsh & Blows,

2009). Conversely, if one or more of the eigenvalues is

zero, evolutionary trajectories are restricted to a lower-

dimensional hypersurface in the adaptive landscape,

meaning that there are phenotypic combinations

unattainable by the population provided that its G

matrix remains constant. The constraint in this context

is a purely phenomenological concept – the G matrix

or its eigenstructure facilitates predicting how a popula-

tion will respond to a given selective pressure, without

explaining why on the physiological or developmental

ground. In other words, it does not reveal the causal

basis of evolutionary changes.

An alternative approach is to explicitly model the cau-

sal structure over phenotypic characters using a directed

graph or path diagram (Wright, 1920; Li, 1975; Lynch,

1988; Crespi & Bookstein, 1989; Mitchell-Olds & Bergel-

son, 1990; Mitchell, 1992). The technique has been

applied in life-history studies to distinguish indirect from

direct fitness contributions of traits, with an aim to pro-

vide a more detailed picture of selection than that cap-

tured by selection gradient b that focuses solely on the

proximate causes of fitness. Path analysis can also be

used to explicate the constraints summarized by the G

matrix in terms of direct causal relationships among

phenotypes. For a set of n traits, a linear path model can

be represented by an n 9 n matrix whose ij element is

the path coefficient of the ith trait on the jth trait and is

zero if there is no edge between them. Let B be such a

matrix and define Φ = (I � B)�1, where I is an identity

matrix. Then, the G matrix can be written as:

G ¼ UGeU
T; (1)

where Ge is the covariance of the additive genetic com-

ponents not attributable to direct causal relationships
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among traits and the superscript T is a matrix transpose

(Gianola & Sorensen, 2004). Inserting this into the

Lande equation and rearranging yield

D�z ¼ UGeg; (2)

where the extended selection gradients g = ΦTb measure

the total (direct and indirect) effects of traits on the rel-

ative fitness (Morrissey, 2014).

Morrissey’s equation (2) describes the change in

mean phenotype as a function of the phenotypic causal

structure (Φ) as well as selective pressures (g) and the

covariance of exogenous genetic values (Ge). To fit the

model to an actual population, however, one must first

identify the path diagram, which is not a trivial task.

The heuristic use of repeated multiple regression to

construct a path diagram (Mitchell-Olds & Bergelson,

1990) is problematic for a regression coefficient inevita-

bly confounds a direct causal relationship between

traits with genetic associations (Kempthorne, 1978).

Confirming a causal link with a manipulative experi-

ment or assuming it on an a priori ground does not

solve the issue because it does not eliminate the possi-

bility of genetic confounding that may bias the estima-

tion of the path coefficient. In general, a phenotypic

correlation may arise in multiple, nonexclusive man-

ners including a direct causal (developmental or life

history) link, environmental/genetic/phenotypic con-

founding, and linkage disequilibrium. Although equa-

tion (2) requires one to separately estimate these

possible sources of phenotypic associations, no regres-

sion method can achieve this owing to insufficient

degrees of freedom (Cowley & Atchley, 1992). Further,

the construction of a path diagram presupposes the ori-

entation of each causal edge, which is underdetermined

from a symmetric correlational relationship.

Confounding also represents a serious obstacle in

evolutionary predictions based on Lande’s equation,

one of its vital assumptions being that selection gradi-

ents b reflect all and only direct causal contributions

from the phenotype to fitness, free from any unob-

served environmental, phenotypic or genetic confound-

ing (Mitchell-Olds & Shaw, 1987; Hadfield, 2008;

Morrissey et al., 2010). This cannot be guaranteed by

the regression method alone. In another context, the G

matrix has been used not only as a statistical summary

of evolutionary potential, but also to infer the underly-

ing genetic architecture or developmental modules (e.g.

Atchley, 1984; Riska, 1986; Cheverud, 1996; Hansen,

2006; Hansen & Houle, 2008; Polly, 2008). A variety of

methods have been proposed to detect a modular struc-

ture from genetic or phenotypic correlations (e.g. Che-

verud & Buikstra, 1981; Cheverud et al., 1983; Zelditch,

1988; Phillips & Arnold, 1999; Mezey et al., 2000; Mag-

wene, 2001, 2008; Mitteroecker & Bookstein, 2007,

2008), many of which are variants of the exploratory

or confirmatory factor analysis. The underlying assump-

tion of factor analysis and other proposals to study

genetic modules is that all phenotypic associations

derive from pleiotropic genes with no horizontal (phe-

notypic) causal relations. This assumption, again,

remains untested by these statistical methods.

Hence, identifying the causal structure of an evolving

population proves both essential and challenging in

either approach. The difficulty is familiar with the dic-

tum ‘correlation is not causation’ – statistical informa-

tion underdetermines causal relationships. Although

this is true in general, recent decades have seen rapid

developments of causal search algorithms that attempt

to infer causal facts from statistical data (Pearl, 2000;

Spirtes et al., 2000). Rather than directly fitting free

parameters of an a priori model, these algorithms

exploit the patterns of conditional independence to nar-

row down the range of causal hypotheses consistent

with the observed data. A reduction in the hypothesis

space facilitates the determination of what model to fit

with the data quantitatively. Although causal modelling

has been applied in ecology (Shipley, 2000, 2010) and

breeding literature (Valente et al., 2010, 2011; Rosa

et al., 2011), its implication to the study of evolution

and relative significance vis-a-vis the existing methods

are not well documented. The present article aims to

address this deficiency. Following a brief introduction

of the basic idea of causal search, this article explores

its potential in identifying a path model and distin-

guishing genuine selection from spurious correlations.

Using the data reported by Cheverud et al. (1983) as

input, it will be demonstrated that the algorithm creates

an ontogenetic process model that corresponds well

with their findings. The method presented herein, how-

ever, is not ‘a silver bullet’. The last section discusses its

limitations and precautions in biological applications.

Constraint-based causal search

Theoretical background

The goal of causal search is to construct a path diagram

from observational data with no or minimum assump-

tions regarding a specific form of the causal structure to

be identified. The task consists of determining the pres-

ence or absence of a direct causal connection (adja-

cency) for each pair of variables and orienting causal

edges. This section describes how the search algorithm

manages these two subtasks. A more complete treat-

ment can be found in Spirtes et al. (2000) or Pearl

(2000). For an accessible introduction to biological con-

texts, see Shipley (2000, 2010).

The basic idea of causal search is that a probability

distribution is generated from the underlying causal

structure and as such contains some trace of the latter

in the form of conditional independence. As an exam-

ple, suppose Fig. 1 represents the true causal structure

underlying four observed variables {X1, X2, X3, X4}. It
is then expected that although X4 correlates with its
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remote cause X1, this dependence will be cleared when

conditioned upon the intermediates X2 and X3; in for-

mal notation, X1 6?p X4 and X1 ⊥p X4 | {X2, X3}, where

⊥p denotes probabilistic independence and 6?p depen-

dence. The generative structure thus constrains possible

forms of distribution in such a manner that causal (in)

dependence between variables implies their probabilis-

tic (in)dependence. The notion of causal independence

is more formally defined by d-separation (Pearl, 1988,

2000). A path p is said to be d-separated by a set of

variables Z if

1 p contains a chain i ? m ? j or a fork i  m ? j

such that the middle variable m is in Z, or

2 p contains a collider i ? m  j such that the middle

variable m or any of its causal descendants is not

in Z.

We also say that variables X and Y are d-separated by

Z if every path between X and Y is d-separated by Z

and denote this as X ⊥d Y | Z. Note that whereas condi-

tional independence (⊥p) is a probabilistic notion that

can be tested vis-a-vis observed data, d-separation (⊥d)

is a topological feature of an unknown path diagram. A

distribution is called Markov with respect to a given

path diagram if d-separation relationships in the latter

entail probabilistic independence holding in the former

such that X ⊥d Y | Z ⇒ X ⊥p Y | Z for any choice of

variables X, Y and Z. When the opposite direction

holds (probabilistic dependence implies d-separation),

the distribution is called faithful or stable.

When do these two conditions hold? The Markov

condition requires that all common causes that simulta-

neously affect more than one variable in the data set

be also measured; that is, there is no confounding. Sup-

pose in the previous example, X1 and X4 were con-

founded by a latent variable. Then, they would no

longer become independent even conditioned on the

observed intermediates (i.e. X1 6?p X4 | {X2, X3}),
despite that they are d-separated (i.e. X1 ⊥d X4 | {X2,

X3}) in the original diagram that omits the confounder.

Because such confounding is expected to be the rule

rather than the exception with phenotypic records, the

Markov condition can hardly be assumed in the present

context.

Faithfulness is violated when there are multiple cau-

sal pathways whose effects cancel each other. In Fig. 1,

this occurs when two pathways X1 ? X2 ? X4 and X1

? X3 ? X4 exert the opposite influences such that the

net effect of X1 on X4 is zero. If the system is linear,

this amounts to b41 | 2 = �b41 | 3, where b41 | k is the

partial regression coefficient of X4 on X1 given Xk, k 2
{2, 3}. Although not impossible, one may expect such

a fine-tuned cancellation to be unlikely (Spirtes et al.,

2000) and even if it occurs, it would not remain invari-

ant under slight changes in the parameters (Pearl,

2000).

The causal search algorithm described below assumes

faithfulness, but not the Markov property of an input

distribution. The algorithm consists of three steps, adja-

cency, orientation and follow-up. The first step of the

algorithm constructs a nondirected graph that repre-

sents what variable is causally connected to another.

Under the faithfulness assumption, an observed proba-

bilistic independence implies the pair of variables to be

d-separated. Using this property, the adjacency step

determines, for any pair of variables in the data set,

whether they are causally disconnected by testing their

conditional independence. More precisely,

1 For each pair of variables X and Y, find a set of vari-

ables S(X, Y) (possibly empty) such that X ⊥p Y | S
(X, Y). Connect X and Y with an undirected edge if

and only if there is no such set.

Provided that all statistical decisions of independence

are made correctly, this rule yields an adjacency graph in

which the absence of an edge between a pair of variables

guarantees that they do not cause each other directly

nor have a latent common cause. However, without

the Markov condition, the presence of an edge does not

necessarily represent a direct causal relationship – it

only means that they are inseparably correlated and

this association may be due to a confounding factor.

Given an adjacency graph, the next step is to orient

its undirected edges. The orientation process makes the

use of a specific structure called collider where two

edges ‘collide’ at the middle node such that X ? Z  Y

(see the second part of the definition of d-separation).

A unique property of the collider is that the variables at

both ends (X, Y) become dependent conditioned on the

middle (Z). For example, the collider X2 ? X4  X3 in

Fig. 1 yields X2 ⊥p X3 | X1 but also X2 6?p X3|{X1, X4}.
An illustration of collider in the context of evolution is

the linkage disequilibrium induced by selection, where

selection creates a correlation between two uncorre-

lated loci L1 and L2 both affecting fitness W. In such

cases, L1 ? W  L2 forms a collider and conditioning

on W by selection induces a genetic correlation. Collid-

ers whose two ends are not connected to each other

directly are called unshielded. Of course, we do not

know which part of a given adjacency graph forms a

collider, or even an unshielded collider. But because

only unshielded colliders can produce the unique pat-

Fig. 1 Example of collider where two edges X2 ? X4 and X4  X3

collide at X4.
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tern of independence just described, one can infer col-

liding points and orient edges around them based on

the results of statistical tests. Using a wildcard symbol

‘�’ to represent either the arrowtail ‘�’ or the head ‘>‘,
the second rule for edge orientation is as follows:

2 For each triplet X, Z, Y such that X is adjacent to Z, Z

is adjacent to Y and X is not adjacent to Y, orient

X��� Z ��� Y as X �? Z  � Y if and only if Z is not

in S(X, Y).

Because all the unshielded colliders in the true graph

must be identified by this rule, the remaining ternary

relationships can be further oriented such that they do

not create a new unshielded collier:

3 If there is a subgraph X �? Y ��� Z with X and Z

being nonadjacent, orient this as X �? Y �? Z.

Finally, if we can assume that the true causal struc-

ture is acyclic or recursive, that is, if no variable causes

itself, the following rule is applicable:

4 If there is a directed path from X to Y where each

edge is pointing towards Y and they are directly con-

nected by an edge X��� Y, orient the edge as X �?
Y.

Otherwise, X and Y form a cycle and are causes of

themselves, contrary to the assumption of acyclicity.

These rules are implemented by the FCI (Spirtes

et al., 2000) and IC* (Pearl, 2000) algorithms. From a

sample distribution summarized by a covariance matrix

or cell counts, these algorithms output a partial ancestor

graph or PAG, which may contain four types of edges

with the following meanings (Spirtes et al., 1995):

• X ? Y: X causes Y. They may or may not be con-

founded.

• X ↔ Y: X and Y are confounded, with no direct cau-

sal relationship in between.

• X o? Y: Either X? Y or X ↔ Y.

• X o�o Y: A causal relationship is suspected between

X and Y; however, the algorithm could not deter-

mine its form.

There are two caveats in interpreting directed edges

in a PAG. First, although an edge X ? Y implies X to

be a cause of Y, the relation may be indirect; that is, the

causal influence of X on Y may be mediated by other

variables in the data set. Further, directed edges, in

general, do not exclude possible confounding factors,

that is, although X ? Y indicates X to be a cause of Y,

they may further be confounded by other unobserved

factors. There are, however, cases where such possibili-

ties can be eliminated, as we will see below. These

complications do not arise under the Markov condition,

that is when there is no confounding variable.

Figure 2 illustrates an application of the above rules.

The true causal structure is on the left, with {X1, X2}
and {X3, X4} being confounded by latent factors. In

distributions faithful to this graph, the pairs of variables

{X1, X4} and {X2, X3} are independent given X2 and

X1, respectively (i.e. X1 ⊥p X4 | X2 and X2 ⊥p X3 | X1),

which enables the first step of the algorithm to build

the adjacency graph (b). The same pairs, however,

become dependent when conditioned on different vari-

ables, X3 and X4, respectively (X1 6?p X4 | X3 and X2 6?p

X3 | X4). These facts are used in Step 2 to identify the

unshielded colliders X1 �? X3  � X4 and X2 �? X4  �
X3 in the PAG (c). The third and fourth rules are not

applicable in this example, leaving the remaining edges

undetermined (denoted by the empty circles). Although

the result is partial, this example illustrates how facts

regarding the underlying causal structure can be

learned from statistical data alone. More can be inferred

if the time order is known, as we will see below.

Causal search with the mixed model

As mentioned above, the Markov condition cannot be

assumed in most phenotypic records owing to possible

genetic or environmental confounding. Valente et al.

(2010, 2011) have proposed a use of the standard

mixed model to statistically eliminate genetic associa-

tions to restore the Markov property. A linear path

model for a trait vector z with random additive genetic

effects u and residual deviations e can be written as

z ¼ BzþXbþ uþ e

¼ UXbþUðuþ eÞ (3)

where B is a path coefficient matrix, X is a design

matrix, b is a vector of fixed effects and Φ = (I � B)�1

as defined above. Under the standard assumptions of

the multitrait mixed model (e.g. u and e are normally

distributed and independent of each other), the pheno-

typic covariance matrix is

VarðZÞ ¼ UVarðUÞUT þUVarðEÞUT

¼ GþR
(4)

Valente et al. (2010) note that G and R are the addi-

tive genetic and residual covariance matrices estimated

by a mixed model. The residual component thus con-

tains information regarding the phenotypic causal

structure (Φ) and serves as an input to a causal search

algorithm. If Var(E) is diagonal, the conditional (resid-

ual) distribution P(Z | u) satisfies the Markov condition

even if the unconditional P(Z) does not, which allows

one to use a more powerful search algorithm such as

the IC or PC algorithm (Pearl, 2000; Spirtes et al.,

2000). The parameters of the obtained path model can

then be estimated using Bayesian Markov chain Monte

Carlo method (Gianola & Sorensen, 2004; Valente et al.,

2010, 2011).

This approach will be particularly effective under

pervasive genetic associations, which may hide direct

causal relationships among phenotypes. The advantage

is balanced by increased standard errors in the esti-

mated residual covariances, which may impair statistical
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decisions of independence. Moreover, the mixed model

is inapplicable to observational field studies that lack

pedigree information or cannot dismiss the possibil-

ity of environmental confounding. The FCI algorithm

described above will prove useful in such observational

studies or even in designed experiments where some

form or another of nongenetic confounding is suspected

or cannot be discarded.

Applications

Inferring a developmental structure

This section applies the causal search algorithm

described above to biological data reported in Cheverud

et al. (1983). Based on a longitudinal growth study of

561 cross-fostered rats (Atchley & Rutledge, 1980),

Cheverud and colleagues estimated additive genetic,

maternal and residual covariance matrices for the log-

transformed body weight measured at ages 14, 28, 42,

56, 70 and 189 days. The causal connections among

the six ontogenetic stages were explored using the FCI

algorithm in the TETRAD software version 4.3.10-7

(available at http://www.phil.cmu.edu/projects/tetrad/).

Assuming normality as in the original study, Fisher’s z

was used to test independence:

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� jCj � 3

p
2

ln
1þ rXY :C

1� rXY :C

� �

where n is the sample size and rXY.C is the sample par-

tial correlation of X and Y given C. If the population

correlation is zero, z is asymptotically standard normal

(Anderson, 2003). In each test, the independence

hypothesis was rejected at the 5% significance level;

however, the overall results remained robust at the 1%

level. In addition to the reported matrices, the time

order of the measurement points was used to restrict

possible directions of causal flow.

Figure 3(a) is the output of the FCI algorithm applied

to the phenotypic correlation matrix of the six weight

measurements. As expected, the result indicates a

sequential causal path (straight edges), with some possi-

ble connections between distant stages (curved edges).

As noted earlier, however, these curved edges in the

PAG do not necessarily imply direct causal relation-

ships; rather, they may reflect genetic or environmental

confounding. For example, the curved edge W56 ?
W189 does not entail a direct influence of the weight at

day 56 on that at day 189, but is consistent with an

indirect causal path W56 ? W70 ? W189 with some con-

founding in between.

To clear the remaining uncertainties, the FCI algo-

rithm was reapplied to the residual correlation matrix,

which amounts to the partial correlation matrix condi-

tioned on additive genetic components and thus is free

from additive genetic confounding (Valente et al.,

2010). The output PAG indicates a linear pathway

(Fig. 3b) with a possible confounding effect only

between W14 and W42. The result suggests that all the

curved edges in Fig. 3(a) do not represent direct causal

links, but rather are artefacts of genetic confounding.

Furthermore, Fig. 3(b) allows us to conclude the

absence of a significant environmental confounding for

the stages later than W28. To see this, suppose that the

edge W42 ? W56 is confounded. Then, W42 would be

the middle point both of a collider W28 ? W42 ↔ W56

and of a chain W28 ? W42 ? W56, which means that

no set could make W28 and W56 independent (because

if a conditioning set contains W42, the collider is not d-

separated, whereas if it does not, the chain is not d-

separated). However, if that were the case, they must

be connected by Step 1 of the algorithm, contrary to

the actual output. We can thus conclude that edge W42

? W56 is not confounded. As noted earlier, edges in a

PAG are consistent with confounding in general; how-

ever, the possibility can be excluded if there is an addi-

tional causal input (W28 in this case), called instrumental

variable, to the cause variable. In our example, all vari-

ables other than W189 serve as instrumental variables in

the PAG (Fig. 3b) to clear the unconfoundedness of the

edges later than W28.

Figure 3(c) summarizes the above results. Recall that

the curved edges in graph (a) suggested either direct

causal links or confounding of environmental or genetic

(a)  (b)  (c)  

Fig. 2 Illustration of the causal

discovery algorithm with the (in)

dependence relationships used in each

step of inference. (a) True causal

structure with confounding (curved

bidirected edges). (b) Adjacency graph

obtained after Step 1. (c) PAG obtained

after Step 2. Open circles indicate

where the algorithm could not

determine the direction of causal

influence.
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origin. The first two possibilities, however, are elimi-

nated by the output from the residual correlation

matrix (b), leaving genetic confounding to be the only

consistent explanation. By reversing the above reason-

ing of instrumental variables, genetic confounding of

W70 and W189 makes W70 the middle point of both a

collider and a chain. This means that W56 and W189 are

dependent conditioned on any phenotypic variable and

thus connected in graph (a). For the same reason, we

can conclude that the curved edge W28 ? W56 in (a)

was induced by genetic confounding between W42 and

W56. The solid bidirected edges at the bottom of graph

(c) denote these genetic associations. Conversely, the

dashed edges represent the remaining uncertainties due

primarily to the lack of instrumental variables at the

early stages. If the individual phenotypic records and

pedigree information are known (which are no longer

available for the present data; J. Cheverud, pers.

comm), the path and genetic correlation coefficients of

model (Fig. 3c) can be estimated using the Bayesian

MCMC technique mentioned above (Gianola & Soren-

sen, 2004).

The obtained causal graph suggests that the early

development of rat body weight is controlled by age-

specific growth factors rather than by global pleiotropic

effects. This hypothesis is consistent with the subse-

quent study on mice (Cheverud et al., 1996) that found

distinct QTLs for each age-specific body weight, with

few QTLs affecting post-natal growth as a whole. In the

sequential pathway, the phenotypic effect of a single

QTL would be detectable for only a limited time frame

owing to diminishing autocorrelation. The autocorrela-

tion model also explains the observation made by both

the original and subsequent studies that associations

between age-specific weights decline as the time inter-

val increases in all (phenotypic, genetic, maternal and

residual) correlation matrices (Cheverud et al., 1983,

1996). We thus conclude that the causal hypothesis

obtained from the search algorithm is not only consis-

tent with the input data but also extrapolatable to a

further study.

Identifying selective pressures

The issue of confounding also appears significant in

empirical studies of selection (Lande & Arnold, 1983).

It is well known that the ordinary least-square estimate

b̂ of selection gradients is biased in the presence of

unconditioned genetic, phenotypic or environmental

confounding factors (Mitchell-Olds & Shaw, 1987;

Rausher, 1992; Mauricio & Mojonniner, 1997; Hadfield,

2008; Morrissey et al., 2010). If an unmeasured envi-

ronmental factor X affects both phenotype Z1 and fit-

ness W, regressing W on Z1 yields a nonzero b̂1 even if

there is no selection. Moreover, if Z1 is causally affected

by or shares genetic or environmental common causes

with another trait Z2, the estimate b̂2 of its selection

gradient is also biased because the multiple regression

amounts to conditioning on the colliding point of Z2 ?
Z1 ↔ W or Z2 ↔ Z1 ↔ W (Table 1, first and second

rows). Hence, a confounding factor on only one trait

may impair the entire selection estimators. The bias is

(a)

(b)

(c)

Fig. 3 PAGs obtained from the FCI algorithm applied to the rat measurement data in Cheverud et al. (1983). (a) Output from the

phenotypic correlation matrix, which suggests linear pathways with possible causal influences over distant stages (curved edges). (b) Causal

search on the residual matrix confirms that the phenotypic casual structure is sequential. (c) Results indicate that the curved edges in (a)

reflect not a direct relationship, rather a genetic confounding (solid bidirected edges). Dashed edges indicate possible genetic confounding

(bidirected, curved), interphenotypic causation (directed, straight) and environmental confounding (dotted, curved), respectively.

ª 2016 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IO LOGY . J . E VOL . B I OL . do i : 1 0 . 1 11 1 / j e b . 1 2 86 9

JOURNAL OF EVOLUT IONARY B IOLOGY ª 2016 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IO LOGY

6 J. OTSUKA



detectable by comparing the regression slopes of fitness

on the focal traits on the one hand and those on their

breeding values on the other (Queller, 1992; Rausher,

1992; Morrissey et al., 2010, 2012). This, however,

requires phenotypic records of the offspring generation

and therefore does not serve the purpose of predicting

evolutionary responses.

Although there exists no infallible method to detect

environmental confounders, under certain conditions it

is possible to distinguish genuine selection from a spuri-

ous correlation using the method of instrumental vari-

ables discussed above. An instrumental variable in the

present context is an auxiliary trait that causes or is

genetically or environmentally confounded with the

focal trait, but not so with the fitness measure (Z2 in

Table 1). The first condition is met by any trait previous

in time that has a nonzero phenotypic correlation with

the focal trait. Under the faithfulness assumption, a suf-

ficient condition for the second requirement is the trait

being independent of the fitness measure given some

(possibly empty) set.

Let Z2 be such a trait, and S(Z2, W) be the set that

renders Z2 independent of the fitness (i.e. Z2 ⊥p W | S
(Z2, W)). Then, the association between fitness and Z1
implies selection without confounding if and only if Z1
is included in S(Z2, W). The rationale for the rule is as

follows. If W and Z1 are confounded, Z2 �? Z1 ↔ W

forms an unshielded collider. Then, the set S(Z2, W)

cannot contain Z1 because Z2 and W would be depen-

dent given Z1. Conversely if they are not confounded,

the only possibilities are Z2 ↔ Z1 ? W or Z2 ? Z1 ? W

because the fitness cannot be a cause of a phenotype.

In either case, Z2 and W are dependent unless condi-

tioned on Z1 and hence Z12 S(Z2, W). Table 1 illustrates

this with bivariate cases.

The test requires no more than the standard signifi-

cance test of selection gradients; that is, a distribution

must be faithful and allow independent tests. Upon

determining the set of unconfounded phenotypes, the

selection gradients can be estimated by regressing the

fitness only on such a subset.

Discussion

The adaptive response of a population is a function of

its causal structure and genetic variances (Otsuka,

2015, 2016). Owing to the inherent difficulty and lim-

ited feasibility of manipulative experiments, however,

our knowledge on organismal architectures and selec-

tive regimes must often rely on statistical analyses of

observational data. A common issue in nonexperimen-

tal studies is that a phenotypic correlation confounds

genetic associations, environmental effects and a direct

causal relationship between phenotypes (Kempthorne,

1978; Cowley & Atchley, 1992). The present article pro-

posed a new approach to discern these three sources of

statistical associations based on differential patterns of

conditional independence. Unlike conventional statisti-

cal tools that try to fit a priori structure to data, the

causal search attempts to build a path diagram based on

the general conditions regarding the relationship

between causality and probability.

The key assumption of the FCI algorithm is faithful-

ness, which claims that an active (not d-separated) cau-

Table 1 Comparison of multiple regression and the FCI algorithm under different selective scenarios

The leftmost column depicts three possible cases where only the bottom row represents selection. Z2 is an auxiliary phenotype d-separated

from fitness. This means that there exists a set S(Z2, W) conditioned on which Z2 is independent of W. The test declares selection on Z1 if S

(Z2, W) includes Z1 (bottom). Note that multiple regression (second column) provides no information as to the possible confounding and

falsely concludes selection on unselected trait Z2 if there is confounding.
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sal link yields a statistical dependence, or by contraposi-

tion, that independence entails d-separation. In prac-

tice, however, the algorithm requires a stronger

assumption that a causal relationship must yield a sig-

nificant association to trim edges based upon nonsignifi-

cant results of independence tests (Zhang & Spirtes,

2003). Strictly speaking, therefore, the absence of an

edge in an output graph does not warrant a conclusion

of causal unrelatedness; rather, it reflects the fact that

the statistical test did not detect a significant total effect.

The qualification is especially imminent in the causal

inference of life-history traits where various types of

trade-off are expected. If, for example, negatively corre-

lated traits are positively selected, the trade-off among

the fitness components may lead to an almost unfaith-

ful distribution, which invites type II errors and conse-

quent incorrect edge omissions. The risk can be

reduced by using a more inclusive variable set or

increasing the sample size. No finite sample size, how-

ever, can guarantee that the probability of overlooking

an existing causal influence is less than a given thresh-

old, because any causal search procedure for con-

founded data is only pointwise consistent but not

uniformly consistent (Robins et al., 2003). That is, we do

not know how powerful our test must be to detect a

causal relationship because the effect in question can

be arbitrarily small (i.e. almost unfaithful). Thus,

although the FCI algorithm can correctly judge the

adjacency at the asymptotic limit, no finite sample can

be guaranteed to approximate this result. This limita-

tion is not peculiar to the algorithm, but rather applies

to every nonexperimental method including any type

of regression analysis.

Whereas type II errors result in edge omissions, type

I errors – mistakenly rejecting independence hypotheses

– lead to incorrect edge commissions. Given that the

algorithm involves repeated tests, there is a non-negli-

gible probability of making incorrect statistical decisions

even with a reasonably small significance level. The

overall error probability of the algorithm is difficult to

evaluate because (i) tests are not independent of each

other; (ii) an incorrect statistical decision may be offset

by subsequent tests without affecting the final output;

(iii) conversely, one error may have multiple conse-

quences, for example yielding incorrect adjacency and

orientation; and all of these depend on the unknown

causal structure (Spirtes et al., 2000, p. 96). An alterna-

tive strategy is to control the false discovery rate of the

adjacency step of the algorithm to curb the expected

proportion of the falsely discovered links to all those

discovered under a specific value (Li & Wang, 2009).

Similar to any other statistical method, the output

from the algorithm should not be accepted as a solid

fact, but as a hypothesis for further experimental

studies. Provided these caveats, causal modelling pro-

vides a promising approach to build, identify and

examine a causal hypothesis from observational data.

The emphasis on the model construction is what dis-

tinguishes causal search from the conventional statis-

tical methods that focus on model fitting. Because

these model assumptions remain basically untested,

the estimated parameters frequently present a mis-

leading picture regarding the biology of the organisms

under study. The above discussed study of Cheverud

et al. (1983), for example, identified two major princi-

pal components in the estimated G matrix, which

they interpreted as two modules of pleiotropic genes

with distinct causal roles – the first group regulating

the height of the growth curve and the second its

shape. Such global pleiotropic effects, however, were

not confirmed by the subsequent study (Cheverud

et al., 1996) or the present reanalysis. Rather, the two

principal components are likely to be artefacts result-

ing from the sequential ontogenetic pathway. Because

the upstream stages mainly determine the intercept of

the growth curve and the later stages regulate its

slope, genetic variances at these different stages may

have been detected as principal components each

associated with the curve height on the one hand

and its shape on the other. If this is the case, the

detected ‘components’ do not point to distinct biologi-

cal mechanisms. In general, reification of principal

components as genetic modules assumes the absence

of interphenotypic causal relationships, whereas the

causal interpretation of path coefficients estimated by

path analysis or structural equation modelling presup-

poses no genetic or environmental confounding. The

method described in this study can be used to exam-

ine these causal assumptions and biological interpreta-

tions of the statistical models.

Another possible area of application is the study

of selection. Despite its crucial importance in

understanding adaptive evolution, the empirical

studies of selection have paid relatively little atten-

tion to the possible bias in the estimated selection

gradients due to unobserved confounders (Mitchell-

Olds & Shaw, 1987; Rausher, 1992; Mauricio &

Rausher, 1997; Hadfield, 2008; Morrissey et al.,

2010). Although selection and a spurious correla-

tion are indistinguishable from a statistical associa-

tion alone, they generate distinctive patterns of

conditional independence that can be tested with

the aid of an instrumental trait variable. In addi-

tion, a violation of faithfulness in this context is

less likely because it only happens when an unob-

served fitness contribution of the auxiliary trait

cancels the statistical dependence that arises from

conditioning on the collider, and there is no bio-

logical reason to expect this to occur. To repeat,

this does not imply impossibility, but given the

scarcity of alternatives the method provides a use-

ful tool to detect a bias of evolutionary predictions

with fewer assumptions than conventional regres-

sion analysis.
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Conclusions

A major obstacle for observational studies of phenotypic

integration or selection is that statistical associations

among traits or fitness are presumably confounded by

multiple unknown factors. The present article described

a causal search algorithm that exploits the patterns of

conditional independence to discern direct causal rela-

tionships between phenotypes from genetic or environ-

mental confounding and to determine the direction of

causal influence using the property of unshielded col-

liders. The method was illustrated with the growth data

of rats reported in Cheverud et al. (1983) and its appli-

cation to distinguish selection from spurious correlation

was suggested with a hypothetical example. The causal

hypothesis obtained from the rat data explains the

observed patterns of pleiotropy in accord with the com-

mon understanding of the ontogenetic mechanism and

a subsequent study (Cheverud et al., 1996). In combi-

nation with confirmatory experiments, the causal

search algorithm can provide valuable information for

furthering our understanding of the generative struc-

ture of phenotype and its implication to adaptive evolu-

tion.
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