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Ockham’s Proportionality: A Model
Selection Criterion for Levels
of Explanation

Jun Otsuka

Abstract Philosophers have long argued that a good explanation must describe its
explanans at an appropriate level. This is particularly the case in social sciences and
risk analyses, where phenomena of interest are often determined by both macro and
micro factors. In the context of the interventionist account of causal explanation,
Woodward (Philosophy of Science 81:691–713, [18]) has recently proposed that a
causemust be proportional in the sense that it contains just enough information about
its effect. The precise formulation of proportionality and its justification, however,
have been under debate. This article proposes an interpretation of proportionality
based on Akaike Information Criterion, a statistical technique for model selection.
In a nutshell, disproportional cause variables with too much detail often call for
extra parameters, which increases a model’s complexity and impairs its predictive
performance. By focusing on a model’s predictive ability and its relationship to
evidence, this chapter highlights the importance of a pragmatic or what Woodward
calls a “functional” factor in the reductionism debate.

Keywords Ockham’s razor · Reduction · Individualism vs holism ·Model
selection · Akaike information criterion

3.1 Introduction

Philosophers have long argued that a good explanation must not only identify the
right explanans but also describe it at an appropriate level [2, 11, 20]. This is partic-
ularly the case in social sciences and risk analyses, where phenomena of interest
are often determined by both macro and micro factors. The cause of poverty, for
example, may be attributed on the hand to macrosociological factors such as reces-
sion, taxation system, the extent of the social safety net, etc., and on the other hand
to individual characters such as job skills, education, or health status. The ubiquity
of competing sociological theories of different granularity has raised a long-standing
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debate between individualists who try to understand any social phenomena in terms
of behavior, properties, or interactions of individual actors, and holists who confer
genuine explanatory roles on social structures or organizations [7, 9, 21]. The key
question here is whether macro variables have any causal or explanatory power irre-
ducible to properties of its parts, despite the fact that the former supervene on and
thus are completely determined from the latter.

In the context of the interventionist account of causal explanation, Woodward
[17] has recently proposed that a cause must be proportional, meaning that it must
contain just enough information about its effect. This invites two questions: how
to assess or measure proportionality, and why is proportionality a good thing? This
article proposes an interpretation of proportionality based on Akaike Information
Criterion (AIC; [1]). Akaike’s theory tells that, other things being equal, predictions
of parsimonious models tend to be more accurate than those of complex models [3].
Applying this idea, I will argue that disproportional cause variables with too much
detail often call for extra parameters, which increase amodel’s complexity and impair
its predictive performance. The proportionality criterion in this understanding is thus
a variant of Ockham’s razor applied to the context of causal explanations [14, 15].

The chapter unfolds as follows. I begin in Sect. 3.2 with a brief description of
Woodward’s notion of proportionality, followed by an examination of criticisms and
interpretations of the concept offered by subsequent philosophical works (e.g., [4,
10]). Section 3.3 introduces my account of proportionality based on Akaike’s theory.
After its formulation, the idea will be illustrated with a simple simulation to compare
the predictive accuracy of two—proportional and disproportional—models. The new
approach for selecting a level of explanation has implications for reductionism,which
are discussed in Sects. 3.4 and 3.5. The AIC-based proportionality clarifies condi-
tions under which multiple realizability does not bar reductive explanations: in short,
successful reduction occurs when a lower-level theory integrates micro-level prop-
erties into a simple model. The approach also highlights pragmatic factors in the
reductionism debate, most notably our ability to collect data, as a key to deriving
the positive value of higher-level explanations. I will argue this pragmatic nature
makes my account of proportionality more in line with Woodward’s [18] functional
approach to explanations.

3.2 Kinds of Proportionality

Proportionality is the requirement that a description of a cause must “fit with” or
“proportional” to that of an effect in the sense that it does not contain irrelevant
detail. Consider Yablo’s [20] example of a pigeon trained to peck at red targets to
the exclusion of other colors. Now, suppose the red target the pigeon pecked on
an occasion had a particular shade of scarlet. We then seem to have two ways of
describing the situation:

1. The presentation of a red target caused the pigeon to peck.
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2. The presentation of a scarlet target caused the pigeon to peck.

Provided they are both true, (1) strikes us to be a better explanation than (2) because
by assumption what makes a difference in the pigeon’s behavior is redness rather
than scarletness. Proportionality captures this intuition. According to Woodward’s
definition, a cause is proportional to its effect iff (a) it explicitly or implicitly conveys
accurate information about the conditions under which alternative states of the effect
will be realized and (b) it conveys only such information—that is, the cause is not
characterized in such a way that alternative states of it fail to be associated with
changes in the effect ([17], p. 298).

In Yablo’s example, describing the causative target as scarlet rather than red
violates the second condition (b), because other non-scarlet reds, say dark red or
rose, would still trigger the same pecking behavior, and thus these “alternative states
fail to be associated with changes in the effect.” Proportionality is devised to rule
out such redundant information that plays no explanatory role.

Woodward’s proposal has come under close scrutiny in recent philosophical
discussions. Franklin-Hall [4] interprets proportionality as a requirement that the
functional relationship between a cause and an effect be bijective—the first part (a)
of the definition requiring each cause to be mapped to a specific effect (one cause,
one effect), while the second part (b) forbidding distinct causes to be mapped to the
same effect (one effect, one cause). Understood in this way, however, Franklin-Hall
contends that proportionality fails to reject an intuitively too fine-grained explana-
tion. She notes that the above descriptions (1) and (2) of Yablo’s thought experiment
are incomplete, because they do not specify the contrast class, i.e., what values the
cause variable could take other than red (or scarlet). Franklin-Hall fills in that missing
information and comes up with the following contrast class:

1* The presentation of a red target (other value: presentation of a non-red target)
caused the pigeon to peck (other value: not peck).

2* The presentation of a scarlet target (other value: presentation of a cyan target)
caused the pigeon to peck (other value: not peck).
([4], p. 564, with the order reversed).

Intuitively (1*) is the better explanation for the same reason we favored (1) above,
but Franklin-Hall argues that proportionality fails to support this intuition because
the causal relationships in (1*) and (2*) are both bijective: in (1*) we have {red →
peck, nonred → notpeck}, while in (2*) {scarlet → peck, cyan → notpeck}.

This criticism, however, is an artifact of restricting the domain of the mapping
relation to an arbitrary subset of all the target chips, which presumably include
those that are neither scarlet nor cyan. What if samples contain, say, cobalt or navy
targets? (2*) says nothing about their consequences and thus is at best an incomplete
description of the causal relationship.1 This could be patched by adding a third

1On the other hand, if indeed all targets are either scarlet or cyan, there is no difference in granularity
between the two descriptions and choosing between them is simply a matter of taste. Note the
problem here (when there are more than scarlet or cyan targets) is that Franklin-Hall’s “variable”
having only scarlet and cyan as values fails to satisfy a formal requirement of a random variable,
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catch-all value such as “presentation of a target neither scarlet nor cyan,” but then
the domain has three causal values and the relationship is no longer proportional in
the bijective sense.

Another—more sympathetic—interpretation comes from the group of Paul Grif-
fiths and his collaborators, who use information theory to refine the concept of infor-
mation in Woodward’s definition of proportionality [5, 10]. Recall proportionality
requires a cause X to convey enough information about the effect Y but no further.
Griffiths et al. identify the amount of information that X carries about Y with their
mutual information I (X; Y ) which represents the extent to which knowing a state
of X reduces the uncertainty of Y . In contrast, the excess of information in cause X
can be measured by its entropy H(X) which represents the uncertainty about X ’s
state. These two measures set conflicting objectives because fine-graining a variable
increases both its mutual information (with any other variables, including its effect)
and entropy. Proportionality can be defined as an optimal balance between these two
desiderata:

PropINF: a cause X of an effect Y must (a′) maximize the mutual information
I (X; Y ) while (b′) minimizing its entropy H(X) [10].

As can be shown easily, this is equivalent to choosing the coarsest cause variable
that maximizes the mutual information.

One strength of the information-theoretic interpretation is that it can handle contin-
uous or stochastic variables. Suppose, as is very likely, that the pigeon in the above
hypothetical experiment responds to stimuli only stochastically. Such a stochastic
causal relationship cannot be expressed by a simple bijective function, but PropINF
is applicable as long as we have the joint probability distribution over the cause
and effect variables. In effect, relationships do not even have to be causal—one can
well calculate PropINF for a correlational relationship with no direct causal link,
although the focus of [10] is on causation. This holds true of any other proposal
of proportionality, including Woodward’s, Franklin-Hall’s, and mine, and for this
reason what follows treats proportionality as a criterion for the general problem of
variable selection, not just for causes or effects.

Although theoretically attractive and versatile as seen above, the information-
theoretic criterion is difficult to apply in actual problems because the knowledge of
the joint probability distribution it requires is hard to come by. A pigeon’s pecking
probability, for example, is not something that is given a priori, but must be estimated
from data (that is the reasonwe do experiments).Mutual information and entropy can
also be calculated from data, but the problem is that the sample mutual information
tends to overfit data. The assumption of PropINF is that mutual information hits a
“plateau” as the causal variable gets fine-grained—the proportional variable is the
coarsest among those at the plateau. But as we will see later with a simulation study,
sample mutual information tends to increase almost indefinitely in proportion to the
granularity of the used variable. This suggests PropINF is likely to fail to screen out
too fine-grained descriptions in actual cases.

defined as a function on the sample space. Hence her later consideration on “exhaustivity” which
amounts to adding other cause variables does not affect the argument here.
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What motivates Woodward’s account of proportionality (along with his other
criteria, such as specificity) is what he calls the functional approach to causa-
tion, which evaluates causal claims in terms of their usefulness or functionality in
achieving our epistemic goals and purposes [18]. The project in this line involves
“normative assessment (and not just description) of various patterns of causal
reasoning, of the usefulness of different causal concepts, and of procedures for
relating causal claims to evidence” (p. 694, italics in original). Thephilosophical anal-
ysis of proportionality, then, must identify the specific epistemic goal it is supposed
to serve and clarify its connection to evidence. That is, why, how, andwhen is propor-
tionality a good thing? My proposal is that a proportional cause variable is expected
to give more accurate predictions than non-proportional ones, in the case predictions
are based on finite data. Proportionality, therefore, is not an a priori goal but rather a
means to achive predictive accuracy, and the decision as to whether a given descrip-
tion is proportional or not depends not only on the nature of the causal relationship
but also on the amount of data we have to estimate the relationship. The next section
substantiates this idea based on Akaike’s theory of model selection.

3.3 Model Selection Approach

The previous discussions on proportionality have asked what the appropriate level
of description of a causal relationship is, assuming the relationship itself is already
known. This assumption, however, is unrealistic because in most empirical research
scientists have to begin by hypothesizing the relationship between a putative cause
and effect. The hypothesized relationship is called a model and is represented by
a function that calculates the probability of an effect given the input of a cause.
In our pigeon example, a model assigns the probability of pecking to each target
presented. There are various ways to model the same phenomenon. To illustrate
this imagine two experimenters, Simplicio and Complicatio, come up with different
models about the pigeon’s behavior. Simplicio thinks the only thing that makes
a difference in the pigeon’s behavior is whether the target is RED or BLUE. He
thus builds a model with two parameters which specify the probability of pecking
targets of each color, P(peck|RED) and P(peck|BLUE). Complicatio thinks that’s
not enough. His hypothesis is that pigeons have better vision than human and can
distinguish subtle nuances in color. Accordingly, the target chips that look red for
us must be further classified into DARK RED, SCARLET, and ROSE, whereas the
blue targets into CYAN, COBALT, and NAVY. Complicatio’s model thus has six
parameters, one for each conditional probability given a specific shade. This model
is clearly more fine-grained than Simplicio’s, and this difference in granularity is
reflected in the number of parameters of the respective models.

To decidewhichmodel is better, they jointly run an experiment and fit theirmodels
to the obtained data. How well a model fits to data can be evaluated by looking at its
likelihood, which is the probability of data given amodel P(data|M). High likelihood
means that the observed data are well predicted by a model, which certainly seems a
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good sign. Since a model’s likelihood depends on its parameters, one can choose the
best set of parameters that maximizes a model’s likelihood, or log-likelihood, which
comes to be the same thing (taking the logarithm is just to make the calculation
easier). Such parameters are calledmaximum likelihood estimators. In our case, they
are actual frequencies of pecking—hence if pigeons have pecked 4 out of 10 total
RED target presentations, the maximum likelihood estimator of P(peck|RED) is
simply 0.4.

Suppose Simplicio and Complicatio have done their math and obtained the
maximum likelihood of theirmodel.Whichmodel fits the data better?Without excep-
tion, the winner is Complicatio. In nested models like those we have here, the likeli-
hood can only increase but never decrease as a model’s parameters increase, because
a model with more parameters is more flexible to “fit” the data, and this is so even if it
contains seemingly redundant or unnecessary parameters. To borrow Hitchcock and
Sober [6] expression, likelihoodmeasures howwell amodel accommodates data, i.e.,
the facts that have alreadyhappened. In our case, Simplicio’smodel is a special case of
Complicatio’s with P(peck|DARKRED) = P(peck|SCARLET) = P(peck|ROSE)
and P(peck|CYAN) = P(peck|COBALT) = P(peck|NAVY). This means any data
that can be “accommodated” by Simplicio’s model can be equally well handled by
Complicatio’s. This is a general phenomenon: any reductive model has a higher like-
lihood than its less-specific counterparts, and thus better accommodates data. This
fact underlies the reductionist intuition that a lower-level description allows for a
finer representation of the reality, and thus is epistemologically superior.

Accommodating the past, however, is not always our epistemic goal, nor is it even
an important one. Hitchcock and Sober [6] rather emphasize prediction as a major
goal of building scientific models, and argue that a complicated model may not give
an optimal result in this respect. It is not difficult to see why in the present case. As
an extreme example, we can imagine a model that counts every single presentation
of a target as a different stimulus (this is in a sense true, for no two events are exactly
the same. There is always a difference, say, in the lighting conditions etc.). Although
such a “highly-detailed” model is guaranteed to have the highest likelihood, it says
nothing about what will happen at the next presentation of a target, which it considers
to be unlike any other in the past. Hence a model that best accommodates the past
is not necessarily the one that serves best for predicting the future. Such a model is
said to overfit the existing data, at the expense of its ability to predict novel data.

Estimating the predictive accuracy of a model is the principal goal of model
selection, whose philosophical implications have beendiscussed byForster andSober
[3] along with the related works [6, 13, 14]. Here, I summarize the idea. Above we
saw that a model’s ability to accommodate data is measured by its likelihood, the
probability of observed data given that model. In contrast, the predictive ability of
a model is measured by expected likelihood, E(data|M), the likelihood averaged
over all possible datasets including unobserved ones [3, 14]. The higher this value
is, the better a model predicts future datasets on average. Because it concerns future
and not-yet-observed data, the predictive accuracy (expected likelihood) of a model
cannot be calculated from observed data, but must be estimated. Akaike [1] showed
that under certain conditions, which do not concern us here, its unbiased estimator
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Table 3.1 Specification of
two simulation experiments.
In Experiment 1, the pecking
probabilities depend only on
colors (RED/BLUE) and
individual random effects. In
Experiment 2, they also
depend on difference in
shades. In each experiment,
the total of 10 targets are
presented to each of 5
pigeons. After each
experiment, Simplicio’s and
Complicatio’s models were
fitted to data and their AIC
was calculated using
glmmML function in R
software

Color Shade Experiment 1 Experiment 2

Dark red 0.8 0.9

Red Scarlet 0.8 0.8

Rose 0.8 0.7

Cyan 0.2 0.3

Blue Cobalt 0.2 0.2

Navy 0.2 0.1

is given by

logP(data|M) − k

where k is the number of the free parameters of a model. I follow Forster and Sober
[3] and call this estimate AIC score of model M .2

Akaike’s results identify two factors that affect a model’s predictive performance,
its log-likelihood and the number of parameters. These factors often conflict: as
we have seen, complex models with more parameters tend to have a higher log-
likelihood, while their complexity is penalized through the second component k.
Taken together, Akaike’s theory tells that a model that achieves the best balance
between its ability to accommodate a given dataset and simplicity will have the best
average predictive accuracy.

Akaike’s theory has an important implication to our discussion on proportionality.
Recall that in our experimental setup, the number of parameters corresponds to
a model’s descriptive level: Simplicio’s model has only two parameters, whereas
Complicatio’s has six.Thequestionof their comparative performance thus boils down
to whether the extra details/parameters introduced by Complicatio to distinguish
different shades actually “pays off,” i.e., boosts the log-likelihood more than the
margin of 4.

The answer to this question is contingent upon the nature of the data, and to
illustrate this I performed two experimental simulations under different setups. In
the first simulation, pigeons are assumed to peck any reddish target at a constant
probability, as shown in the third column of Table 3.1. 1000 datasets were generated
from these parameters, and at each round the difference in AIC between Simplicio’s

2This definition differs slightly from the convention in the model selection literature, where the AIC
score is defined as the expected log-likelihood times negative two, i.e., −2logP(data|M)+ 2k.
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Fig. 3.1 Differences in AIC between Complicatio’s and Simplicio’s models, calculated from 1000
data generated each with the parameter sets in Table 3.1. In Experiment 1 (solid line), the AIC of
Simplicio’s model is smaller than that of Complicatio’s in most cases, with the mean difference
of 3.47. In contrast, the plot for Experiment 2 (dotted line) is about symmetric around zero (mean
= −0.74)

model (Msimp) and Complicatio’s model (Mcomp) was calculated. The solid curve in
Fig. 3.1 represents the relative frequencies of the differences under this setup, and
shows that in most cases the simpler model Msimp scored a higher AIC. Hence in
this case the AIC favors the simpler model in accordance with our intuition.

This is contrasted with mutual information. When calculated from samples in
the above simulation, Complicatio’s variables always had a higher sample mutual
information than Simplicio’s, with themeans being 0.90 and 0.67, respectively (mean
difference = 0.23 with standard deviation = 0.10). Hence PropINF as proposed by
Pocheville et al. [10] ends up with favoring the too-detailed model in all runs despite
the fact that it has no extra information. This apparent puzzle stems from random
fluctuation in data. The two models will have the same mutual information only if
there is no difference in the actual pecking rate among different shades. But the
stochastic nature of the experiment means there are always slight differences, which
are then counted as “extra information” in calculating sample mutual information.

Next, suppose the pigeons do differentiate shades, with the true pecking rates as
shown in the rightmost column of Table 3.1 (“Experiment 2”). The dotted curve in
Fig. 3.1 is the plot of AIC

(
Msimp

)
−AIC

(
Mcomp

)
obtained under this new setup. This

time the difference in AIC between the two competitive models is less noticeable,
with the mean close to zero (−0.37). This means that even though Simplicio’s model
is wrong, it is almost on a par in its predictive ability with Complicatio’s model
which better captures the reality. Truth, therefore, is not the only arbiter of models’
predictive ability, but simplicity also matters; sometimes a coarse-grained model that
ignores the detail of nature may be useful in predicting the future.
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Elliott Sober [13, 14] has argued that Akaike’s theory gives theoretical support
for the use of Ockham’s razor, i.e., our preference for simpler models. A similar
line of argument can be made with respect to proportionality. The basic idea is
that proportional variables should be preferred because they are conductive to better
predictive performance. Toodetailed variables, as those adopted byComplicatio, tend
to require more parameters, at the cost of impairing the model’s average predictive
ability. On the other hand, amodelmust have enough granularity to correctly describe
the causal relationship in question. This observationmotivates us to use theAIC score
to calibrate the level of description:

PropAIC: when comparing models Mi , i = 0, 1, · · · of different granularities, the
proportionality of a model Mi with respect to data D is estimated by its AIC score,
logP(D|Mi ) − k.

Amodel proportional in this sense is preferred because it is conductive to accurate
predictions.

Like the previous accounts including Woodward’s original definition, PropAIC
requires a cause to convey both enough information about its effect and no more
than necessary. The first component, log-likelihood, measures the informativeness
of the model or how well its putative cause explains the observed outcomes. The
second part of the AIC, in contrast, guards against overdetailing by imposing a cost
for the number of its parameters. Hence as in the original version, PropAIC seeks
proportionality as the balance between these two desiderata, informativeness and
parsimony.

There are also dissimilarities, however. The first point of difference concerns
epistemic goals. Woodward’s motivation for proportionality is to obtain a simpler
account of the true causal relationship, or in other words, a parsimonious picture of
the reality. In contrast, PropAIC is specialized for prediction tasks, favoring a simpler
relationship for the sake of predictive accuracy. These two aims can conflict—the
true model may not necessarily give accurate predictions, as suggested above in
Experiment 2where the predictive performance ofComplicatio’s truemodelwas only
little better than that of the less faithful Simplicio’s model. Should the differences
in parameter among shades be less significant, Simplicio’s model could well have
a higher AIC score. This reflects the instrumentalist character of Akaike’s theory
which places priority on predictive accuracy over a true description of the reality
[13].

The second conspicuous difference is the explicit mention of data. The previous
treatments of proportionality have questioned only the nature of functional relation-
ships connecting causes and effects, without regard to the data with which these
relationships are estimated. In contrast, PropAIC explicitly depends on the data at
hand, so that a model judged as proportional by one set of data may be judged other-
wise by a different set. The appropriate level of description depends on how much
data we have. This again comes from the nature of AIC as an estimate of predictive
ability and the fact that the best predicting strategy hinges on the size of available
datasets.

The next section further discusses these two characteristics in view of deriving
their implications for the reductionism debate.
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3.4 Multiple Realizability and Reductionism

In the philosophical literature, levels of explanation have been discussed in relation
to the multiple-realizability argument against reductionism. A property A is said to
multiply realize another property B if a change in the latter entails that of the former
but not vice versa. In the variable notation used here, multiple realizability means
that the function that maps the values of a lower-level variable to the corresponding
values of a higher-level variable is non-invertible [19].3 The existence of such a
“coarse-graining” function guarantees that any state of a micro variable corresponds
to a unique state of a macro variable, but not the other way around: there is at
least one macro state which is multiply realized by two or more micro states. In
the above pigeon experiments, Complicatio’s variable describing shades multiply
realizes Simplicio’s color variable in this sense.

Multiple realizability has been philosophers’ pet argument against reductionism.
Fodor [2] claimed that because psychological states are expected to be multiply
realized by a number of distinct neurological or physical states that share no non-
trivial common properties, psychological generalizations can not be represented in
any way but by a messy disjunction of neurological laws. Similarly, the gist of
Putnam [11] famous peg-and-hole example was that the multiple realizability of the
structural features of the peg and hole at the particular level makes the lower-level
explanations based on the latter less general and thus inferior. These anti-reductionist
arguments, however, did not go unchallenged. Sober [12] questions Fodor’s premise
that a disjunction of laws is not itself a law or explanatory, for many paradigmatic
laws, such as “water at surface pressure will boil when it exceeds 100 °C,” seem well
to be disjunctive, saying that water boils at 100 °C, 101 °C, 102 °C, and so on. He also
criticizes Putnam, claiming that universality is not the only desideratum of scientific
explanations; one may well be interested in depth as well as breadth, and those who
seek for deep explanations may legitimately prefer lower-level descriptions.

Few philosophers today doubt the explanatory relevance of higher-level sciences
such as psychology or sociology. Anti-reductionists like Putnam and Fodor, however,
make a stronger claim that these higher-level explanations are epistemologically
better than lower-level counterparts, and that is in contention here. Why should
we prefer macroscopic explanations? An answer suggested by the present thesis
is because it provides more accurate predictions. The experiments we saw in the
previous section fit Fodor’s scheme of reduction, where Complicatio’s predictor
variable (i.e., the antecedent of his causal law)multiply realizes that of Simplicio’s.As
a result, Complicatio had to devise six distinct laws to express the same relationship
that took Simplicio only two. The extra complexity has bought Complicatio’s model
a flexibility to accommodate the obtained experimental results, but did not help
him to predict future outcomes. A moral here for the anti-reductionism debate is

3More formally: a random variable is a real-valued function defined on algebra F of a sample
space. A random variable X supervenes on another Y iff for any a, b ∈ F if X(a) %= X(b) then
Y (a) %= Y (b). Y multiply realizes X iff X supervenes on Y but not vice versa. It is easy to see that
in the latter case a coarse-graining function that assigns X(a) to Y (a) is non-invertible.
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that multiple realization and the resulting disjunctive laws of a lower-level science
may lead to overfitting, which is why higher-level explanations should be (at least
sometimes) preferred.

Complicatio’s reductive model is said to overfit data because his variable wrongly
assumes differences in causal properties where there is none or only little. In this
sense, his variable does not curve the nature at its joints. But in reality the “joints”
may not be so conspicuous or even discrete. In Experiment 1 one can easily recognize
two causally distinct properties, Red and Blue. The distinctions among the shades
in Experiment 2 are less obvious. These are just putative examples, and reality can
be more subtle, with difference of order of one hundredth or one thousandth. Do
these differences still mark joints? Reductionists will say yes, because ignoring such
niceties, however small they are, yields a bias in prediction. The reductionist pref-
erence of micro variables is thus motivated and justified by the search for unbiased
laws that have as few as possible exceptions.

However, the avoidance of bias in pursuit of exceptionless generalizations is not
the only, nor even a major, goal of science. Another important goal is to reduce the
variance of estimators—that is, we wish to estimate the parameters of our laws in a
more precise fashion. In general, the variance gets inflated when a model contains a
large number of parameters compared to the size of samples used for its estimation.
Hence there is a trade-off between a model’s bias and variance: the more parameters
we introduce to guard our model against potential biases (and thereby making our
law more disjunctive), the bigger the variance of our estimators become, and vice
versa. Traditional reductionists can be seen as attaching heavy weight to the bias
part of this trade-off, whereas anti-reductionists stress the variance side. But as far as
predictive ability is concerned, the virtue is in the middle: Akaike’s theory implies
that, if the goal of finding a lawful relationship is to use it for future prediction, the
best granularity must balance these two desiderata.

The key in the above discussion is the number of parameters; multiple realization
impairs the predictive performance of the reducing theory provided its disjunctive
laws require separate parameters. However, there are caseswheremultiple realization
is not accompanied by an increased number of parameters, but rather enables a
formulation of an even simpler law at the lower-level. Let us illustrate such a case of
successful reduction with the second experiment in the previous section where the
pigeons’ pecking rate varied among shades (Experiment 2 of Table 3.1). Imagine
that these pigeons are actually responding to light frequency so that their pecking
rate is a function of frequencies of light reflected on targets. Suppose further that
the frequencies of the shades are 420, 450, 480, 600, 630, and 660 THz for Dark
Red, Scarlet, Rose, Cyan, Cobalt, and Navy, respectively. Now a third experimenter,
Salviati, intuited this and built the followingmodel where the pecking rate of pigeons
is a liner function of light frequency X :

Probability of pecking = f (α + βX), for some function f and parameters α,β. (3.1)
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Although Salviati’s X variable takes real values and is definitely finer-grained
than that of the other two experimenters, his model has only two parameters, α and
β. If this model is fitted to the same data used in Experiment 2, we see Salviati’s
model enjoys much better AIC scores than the other two models (Fig. 3.2), which
suggests that Salviati’s model is more accurate despite the fact that his “law” is much
more disjunctive, summarizing infinite laws for each value of the real-valued variable
X .

There are two reasons for the success of Salviati’s model. First is the metric
assumption that colors and shades come in degree and can be expressed by a ratio
scale (frequencies). Themetric assumption allows one not only to order color stimuli,
but also to apply various arithmetic operations such as addition ormultiplication. This
insight presumably comes from knowledge of optic theory, and provides a deeper
understanding of the nature of the cause variable X . The second key factor for the
success is the functional assumption that the shades thus expressed are systematically
related to the pecking rate via Eq. (3.1). This formula assumedly summarizes a theory
about the complex neurological and physiologicalmechanisms relating visual stimuli
to pigeons’ behavior. Salviati’smodel thus stands on the shoulders of these elaborated
theories, which make his law distinct from mere disjunctions. The difference is a
systematic relationship—Salviati’s law (3.1) does not just tell us the pecking rate
for each target, but does so systematically. This is also the reason why the law about
the boiling point of water mentioned by Sober [12] should be distinguished from
what Fodor [2] had in mind when he dismissed disjunctive laws as non-explanatory.
Temperature is measured by interval scale, and already has a rich metric structure to
it; hence, saying that water boils when it exceeds 100 °C is not the same as saying
that it boils at 100 °C, 101 °C, and so on.
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Fig. 3.2 Comparison of AIC among Linear, Macro, and Micro models. Even though Salviati’s X
variable is much finer-grained than that of the other two, his linear model scores smaller AICs (solid
line) and is expected to provide more accurate predictions
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A successful reduction happens, therefore, when a scientific theory enables us to
formulate a systematic relationship at the lower level in a simpleway.Of course such a
theory and relationships are hard to come by inmost special sciences such as biology,
psychology, sociology, and so on; the only reasonSalviati could comeupwith his nice
solution above is that I made it so. In reality there are objective and epistemological
challenges. First, it may simply be the case that nature at its microscopic scale
lacks systematic relationships, as Fodor [2] surmised. Or even if they exist, these
relationships may forever stay hidden from our scientific investigations.

In addition to these two obstacles for successful reduction, the model selection
perspective suggests a third, pragmatic factor that should be considered in the discus-
sion of reductionism. The pragmatic consideration comes from the nature of AIC as
a tool for evaluating the average predictive accuracy of a model [14]. Which model
is considered the best tool naturally depends on our goal, or the size of data used to
fit a model. For example, a model suited for predicting small datasets does not neces-
sarily fare well with large datasets. We have seen that Simplicio’s and Complicatio’s
models almost tied in Experiment 2; but with a bigger sample size (e.g., with 10
instead of 3 targets presentations for each trial of 10 instead of 5 pigeons), Compli-
catio’s model outcompeted Simplicio’s with the mean difference in their respective
AIC scores AIC

(
Mcomp

)
−AIC

(
Msimp

)
= 11.4. Thus under this data-rich situation

PropAIC favorsComplicatio’s reductivemodel as beingmore proportional. In general,
increasing sample size allows for finer-tuning of reductive models. An appropriate
level of description, therefore, depends on the size of data at our disposal. If we have
a large dataset it makes more sense to adopt fine-grained models, but otherwise we
might be better staying at a macro level.

3.5 Objective, Epistemological, and Pragmatic Aspects
of Reduction

The relationship among the three—objective, epistemological, and pragmatic—
aspects of reduction mentioned above can further be clarified by comparing AIC
and mutual information. Above we saw mutual information I (X; Y ) as a measure
of the amount of information X carries with respect to Y . There is an alternative
interpretation, based on the following identity

I (X; Y ) = KL(P(X,Y ); P(X)P(Y )), (3.2)

where KL is the Kullback-Leibler divergence (KL divergence), an information
theoretic measure of the distance between two distributions.4 From this perspec-
tive mutual information measures the distance of the product of marginal distribu-
tion P(X)P(Y ) from the joint distribution P(X, Y ). If this distance is zero then

4To be precise KL divergence is not a distance because it is not symmetric—i.e., KL( f, g) %=
KL(g, f ) in general. This, however, is not relevant to the discussion here.
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Fig. 3.3 A hypothetical plot of the (estimated) distance of various indices from the null model
P(X)P(Y ) for different granularities of X . Solid curve: the true joint distribution P(X, Y ) sets the
upper bound of the information one can exploit by relating X and Y . Dashed curve: as X becomes
detailed a model f (X, Y ) approaches the truth P(X, Y ), but does not reach it. The remaining
distance a is due to our ignorance of the true distribution.Dotted curve: the expected distance from
the true distribution of amodel fittedwith finite samplemay increase if a finer description introduces
more parameters. b Represents the loss due to a pragmatic constraint on available sample size

P(X,Y ) = P(X)P(Y ), namely X and Y are independent and thus there is no
point in considering X and Y together in the form of joint distribution. In contrast,
a large distance suggests that treating X and Y separately likely misses the whole
picture. Mutual information thus measures the modeling opportunity—that is, how
worthwhile it is to relate X to Y to begin with.

Now, consider plotting I (X; Y ) for different granularities of X variable (solid
curve in Fig. 3.3). The horizontal axis of the plot represents granularity of X , where
a variable at each point multiply realizes all the variables to the left.5 The vertical
axis measures, for a given level of X , how much information it has about Y , or
equivalently from (3.2), the distance of the joint distribution from the “null-model”
P(X)P(Y ) where X and Y are treated unrelatedly. Since detailing a variable never
gets rid of the information it already has, the solid curve is non-decreasing, but the
steepness of the slope depends on the nature of the relationship between X and Y .
If it is steep, we can exploit more information about the effect by further detailing
the cause, i.e., there is a lot of opportunity for reduction. In contrast, a flat slope
means that higher-level properties already exhaust most of the potential information
about the effect. The slope of I (X; Y ), therefore, reflects the objective constraint

5Since multiple realization forms a partial order, there are multiple, possibly infinite, ways to align
variables according to their granularity. The X-axis of the plot is just one of them.
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on reduction imposed by the nature of the causal relationship connecting the two
variables. The proposal of Pocheville et al. [10] is to find the plateau of this curve,
i.e. the coarsest X that can exhaust all the information of Y we can get by knowing
their true relationship.

In contrast to the objective constraint that pertains to the nature of the relationship
and is encoded in the true joint distribution P(X, Y ), the epistemological constraint
on reduction stems from our ignorance. For want of the true picture, we build amodel
f (X,Y ) that we think approximates P(X, Y ). Since a model is only an approxima-
tion of the truth, it has a nonzero KL divergence from the true distribution and is
positioned somewhere between P(X, Y ) and the “null-model” P(X)P(Y ) in Fig. 3.3.
This KL divergence is negatively proportional to the expected log likelihood of the
model, the value that AIC tries to estimate.

KL(P(X, Y ); f (X, Y )) = Const. − E
[
log f (X, Y )

]
. (3.3)

In reality the expected log likelihood stays unknown (the right-hand side is an
expectation over the true probability distribution) and thus must be estimated from
finite samples, say via AIC. But here let us assume our limitation is only epistemic,
and we have infinite data to correctly determine the expected log likelihood of the
model with different granularities of X . Under this assumption, a model’s expected
log likelihood never decreases as its variable gets fine-grained, which means the KL
divergence of the model from the true distribution is non-increasing (dashed curve
in Fig. 3.3). The actual slope of the curve depends on the model. A model showing a
steep slope, for example, will approximate well the truth on microscopic scales, and
thus has a high potential for reduction. The KL divergence (3.3) of the model from
the true distribution thus represents the loss of the opportunity of reduction due to
the epistemic limitation of not knowing the true distribution.

Finally, where does the pragmatic factor fit in this plot? The pragmatic limitation
relevant to the current discussion concerns our data-gathering ability. With a finite
sample, a model’s predictive performance depends on whether we have enough data
to afford its complexity. AIC is formally derived as an estimate of the average KL
divergence of the distribution predicted by a model from data sampled from the
true distribution. This distance may increase as a model gets finer-grained, as we
have seen in our simulation experiments. Maximizing the AIC score among models
with different granularities amounts to minimizing the distance between the solid
curve and the dotted curve in Fig. 3.3. The best or most proportional model in this
sense, indicated by PropAIC in the figure, tends to be coarser compared to the optimal
model under infinite sample size, with the difference between them (b in Fig. 3.3)
representing the pragmatic limitation on our data-gathering ability.

The objective, epistemological, and pragmatic limitations for reduction can thus
be visualized as divergences from the null model. Note that this plot is just for
illustration and not meant to be a representative case; the shape of the curves depends
on the nature of the relationship andmodel in question. Qualitative remarks about the
figure, however, are general: (i) The information X contains aboutY with regard to the
true distribution is never lost as X gets finer-grained, thus the solid curve is always
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non-decreasing. (ii) The information X contains about Y with regard to a model
(dashed curve) is also non-decreasing, but does not reach the mutual information.
(iii) A model’s actual performance as estimated by AIC with finite samples (dotted
curve) may decrease as X gets fine-grained. (iv) For these reasons the AIC-based
proportionality (PropAIC) is always coarser than that based on mutual information
(PropINF). The loss of information (a + b) due to this coarse-graining reflects the
two limitations discussed above, namely our ignorance of the true distribution and
limited data to fit a hypothesized model.

The plot also helps us to understand various attitudes toward reductionism. First,
one may construe the problem of reduction as an in-principle matter that concerns
the true picture of the world or ideally completed sciences. The primary question on
this construal would be which level faithfully captures all there is to know about the
relationship between two variables, or maximizes their mutual information. If this is
the problem, reduction to a lower-level science “never hurts,” for mutual information
(solid curve) is a non-decreasing function of granularity. There may be a point,
PropINF, beyond which no further reduction yields additional information and thus
is unnecessary, but nevertheless innocuous. The objective, in-principle attitude thus
admits only this kind of weak form of anti-reductionist stopping rule.

Next, those who take the inherent incompleteness of our scientific knowledge
seriously might be interested in the epistemological merit of reduction, and would
ask whether reduction improves our theory by bringing it closer to the truth. Their
question, then, is which level minimizes the KL divergence of a model from the true
distribution, that is, the distance between the solid and dashed curves in Fig. 3.3. The
shift in question, however, does not affect the overall inclination toward reductionism.
Because the KL divergence in question is non-increasing, there is no penalty for a
lower-level variable; any model is at least as close to the truth as its coarse-grained
version that uses amultiply realized variable. Hence this construal toomotivates only
the weak anti-reductionism.

Finally, consider a more realistic stance that acknowledges not only the incom-
pleteness of scientific knowledge but also the limit of our data-gathering ability. The
question then is which level best serves our epistemic purposes given finite data
available in a specific research context. In this case reduction is not always good,
at least for the purpose of predictions; reducing variables beyond a certain gran-
ularity marked by PropAIC is not just otiose but potentially harmful for a model’s
predictive performance (dotted curve). Hence the focus on the pragmatic limitation
motivates the strong form of anti-reductionism that cautions against a definite demerit
of reductive investigation.

Woodward’s functional account best fits with the last among these three attitudes
towards reductionism, with its focus on “usefulness of different causal concepts, and
of procedures for relating causal claims to evidence” [18], p. 694). Evaluating useful-
ness makes sense only in relation to their users who are limited in both knowledge
and resource. The advantage of the AIC-based approach presented here is its explicit
recognition of these limitations from which it derives the positive value of propor-
tionality, namely, that proportional variables can be more useful despite containing
less information than other finer-grained descriptions.
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An implication of this is that proportionality is a pragmatic standard, rather than
an epistemic criterion for truth. Although some philosophers expressed a concern
that the focus on pragmatics introduces some kind of anthropocentrism into scientific
explanations [4], I argue that it is a virtue rather than a vice of our account. First
of all, very few, if any, philosophers today would deny the pragmatic dimensions of
scientific practices and explanations [16]. Moreover, a consideration of pragmatic
factors proves essential in the context of sociological studies, policy making, and risk
analyses, where the range and amount of possible observations are severely limited
by practical, financial, and ethical reasons. Facing complex social issues, scientists
and policy makers must limit their research focus on only a tiny fragment of possibly
relevant factors and draw a conclusion based on a relatively small dataset. In such
situations, it makes much more sense to let your model and conclusion depend on
pragmatic factors rather than on some epistemic ideal one can never attain. In this
respect, the pragmatic aspect of the present approach is not a philosophical drawback,
but rather a necessary element to understand our explanatory practices.

3.6 Conclusion

Justifying the use of high-level explanations in the so-called special sciences has
long been a major challenge in the reductionism debate and in philosophical theo-
ries of explanation in general. The proportionality criterion was proposed to save
high-level causal explanations, but its precise formulation and, more importantly, its
epistemological merit have come under discussion. This paper offered a new inter-
pretation of proportionality based on the Akaike Information Criterion. AIC-based
proportionality estimates the predictive accuracy of a model by balancing its bias and
variance. A model with a too detailed variable tends to overfit data, which impairs its
predictive performance. In such cases we should prefermacroscopic and less detailed
explanations over microscopic ones.

The chapter illustrated this with a rather simplistic example of pigeons, but one
can easily imagine a similar explanatory task arises in social sciences. For instance,
a researcher may be interested in whether the political climate of a country affects its
ratification of an international pact on some cause, say environmental protection. The
explanatory variable here can be described at various levels: one can, like Simplicio,
dichotomize it into either conservative or liberal, or, as did Complicatio, adopt a
finer sub-categorization of political spectrum that distinguishes neo-liberalism, social
democracy, green party, populism, etc. The later by definition gives a more detailed
picture, but not necessarily a better prediction as to whether a new country ratifies
the pact in question. As we have seen, which descriptive level the researcher should
choose depends on data available to fit themodels aswell as the nature of the problem.

This conclusion sheds new light on the long-standing debate on reductionism in
social sciences. The discussion between methodological individualism and holism
hasmainly resolved around the in-principle derivability of macro states, properties or
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theories from micro counterparts [9]. But as Lohse argues, the choice between indi-
vidualist versus holist explanation should depend “on our epistemic interest (what
do we want to know?) and pragmatic aspects such as efficiency [8].” The AIC-based
approach takes into account this pragmatic aspect by evaluating the “efficiency” of
explanations/models of different granularity in terms of their predictive ability. Since
the AIC score depends on objective, epistemic, and pragmatic factors which are all
case-relative, the present approach supports the local, piece-meal view of reduc-
tion rather than the classical view that focuses on the derivability of entire theories
[12, 17]. According to the piece-meal view, whether we should adopt a reductive or
“individualist” explanation or not should be determined not by an in-principle fiat,
but rather by case-by-case considerations on empirical as well as pragmatic circum-
stances of the problem at hand. The model selection perspective described in this
paper clarifies which factors should be accounted for in each of such decisions, and
why.

The focus on pragmatics is in line with the “functional approach” [18], which
takes usefulness in actual scientific practices as an important (or in Woodward’s
view, the only) arbiter of philosophical accounts of explanations. Usefulness in the
present context meant predictive accuracy. This particular choice reflects our use of
causal models to predict (intervention) consequences, but I by no means claim this to
be the only criterion of usefulness. As another research context not so much related
to prediction, one may be interested in finding a descriptive level of longitudinal
data in which any variable of the auto-regression model screens off all the prior
variables from subsequent ones. The AIC-based proportionality as proposed in this
paper falls short for such a purpose because it does not guarantee the desiredMarkov
property. The current proposal, therefore, should be understood as an interpretation
of proportionality for the purpose of prediction. How do different epistemic goals
affect our choice of description remains to be seen.
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