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Abstract
This article presents an overview of the category-theoretical approach to causal 
modeling, as introduced by Jacobs et al. (2019), and describes some of its concep-
tual and methodological implications. Categorical formalism emphasizes causality 
as a process wherein a causal system is represented as a network of connected mech-
anisms. We demonstrate that this alternative perspective provides novel insights into 
the long-standing issue regarding the validity of the Markov condition, as well as 
formal mapping between micro-level and abstracted macro-level causal models.

Keywords Causal models · Symmetric monoidal category · String diagram · 
Markov condition · Abstraction · Causal representation learning

1 Introduction

At present, graphical modeling is the standard toolkit for studying causality and 
determining causal relationships from observed data (Spirtes et  al. 1993; Pearl 
2000). In this approach, a typical causal model M = (G,P) consists of a directed 
acyclic graph (DAG) G over a set of variables and a probability distribution P, 
wherein the graph G = (V,E) is a pair of a set V of variables and a set E ⊂ V × V 
of the edges between them. The variables designate the properties or states of units 
or objects, such as the diets or blood pressures of patients. The existence of an edge 
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from one variable to another indicates that the state of the latter is causally depend-
ent on that of the former such that an intervention in the former results in a change 
in the latter. Thus, within this framework, causality is understood as the relationship 
between events, where the events are designated by variables that assume particu-
lar values. For example, BloodPresure = high indicates an event wherein the blood 
pressure of a given patient is high, and a causal question asks whether such an event 
exhibits a systematic relationship with other events, such as diet or other medical 
conditions.

The event-centered view dates back to British Empiricism, particularly the work 
of David Hume, who considered inductive reasoning as an inference from one type 
of event to another. For Hume, this task was equivalent to establishing a causal 
relationship between events, which he believed could not be warranted by logic or 
experience. Studies on contemporary statistics and machine learning have attempted 
to address this skepticism by introducing various empirical and theoretical assump-
tions that enable an algorithmic identification of causal relationships from observed 
data (Morgan and Winship 2007; Peters et al. 2017). However, the basic conceptual 
framework remains the same: a causal system is considered as a constellation of 
events/variables that manifest regular patterns.

Several philosophers have proposed an alternative conception of causality, 
which features the aspects of processes (Salmon 1984; Dowe 2000) or mechanisms 
(Machamer et al. 2000; Cartwright 2007). According to this perspective, causality 
is best understood as a process that transmits influence from one event to another 
or a mechanism that produces an outcome by taking certain inputs. For example, a 
metabolic process may be considered a mechanism that “generates” blood pressure 
(among other factors) in response to, for example, a dietary practice.1

We believe that this process-centered view of causality can be formally represented 
using the category-theoretic language of string diagrams and that this alternative for-
malism can provide novel insight into certain problems regarding the causal Markov 
condition and abstraction. Based on the seminal work of Jacobs et al. (2019), Sect. 2 
presents the categorical formalization of discrete causal models with finite variables. 
We demonstrate how causal DAGs translate into string diagrams and that a functorial 
mapping of diagrams yields causal models. Our approach prioritizes clarity over the-
oretical rigor and proceeds via examples rather than mathematical proofs so that the 
reader can grasp the core concept without familiarity with category theory. In Sect. 3, 
we investigate the problem of the Markov condition from a categorical perspective and 
point out that the validity of this condition is dependent on the existence of a special 
mechanism known as the copier, which duplicates a causal process without disturb-
ing it. Section 4 presents the problem of abstracting a causal model by coarsening its 
variables. The challenge of abstraction involves mapping a “low-level” micro model 
to a “high-level” macro model consistently. We demonstrate that this mapping can be 
produced via a category-theoretic notion of natural transformation between two causal 

1 Of course, these aspects of causality are not incompatible: for example, Pearl (2000) emphasized the 
mechanistic interpretation of structural equations in the graphical approach. We thank an anonymous 
reviewer for pointing this out.
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models/functors. We conclude that the category-theoretic approach offers a novel per-
spective on and solutions to certain issues that have resisted successful formal treat-
ment in the conventional DAG formalism.

2  Process theory of causality

Although the event-centered view of causality is naturally represented in graphical 
modeling, the process-centered view can be formalized using process theory, which has 
mainly been developed in categorical quantum mechanics and computer science (e.g., 
Abramsky and Coecke 2004; Coecke and Kissinger 2017). In this section, we briefly 
review the application of process theory to causal modeling, as introduced by Jacobs 
et al. (2019).

2.1  Translation of a DAG into a string diagram

Process theory conceptualizes a process as a system of combined mechanisms that 
exchange their products with one another. Each mechanism, which is commonly rep-
resented by a box, has definite types of inputs and outputs, which are represented by 
wires. An example of a mechanism that takes two inputs X1,X2 and returns two outputs 
Y1, Y2 is as follows:

f

Y1 Y2

X1 X2

Unless mentioned otherwise, a causal process flows from bottom to top.
Given two boxes f and g, if the output type of f matches the input type of g, these two 

boxes can be combined vertically using the matching wire, as follows:

f

g

Z

Y

X .

Intuitively, this can be understood as an initial input X that is processed by f being 
transmitted for further processing by g to yield a final outcome Z.

In addition to the vertical composition, multiple streams can be combined horizon-
tally, thereby representing parallel processing:



 Behaviormetrika

1 3

f g

A

C

B

D

.

This describes a situation wherein two types of inputs, A and B, are indepen-
dently processed by f and g, respectively, to output C and D, respectively. Parallel 
processing can also be understood as a combined input A⊗ B that is processed by 
a combined process f ⊗ g to yield C⊗ D.

A system created by combining multiple mechanisms using vertical and paral-
lel compositions is known as a string diagram. A whole string diagram can also 
be considered a large process that takes combined inputs and emits combined 
outputs.

In the context of causal modeling, a diagram serves as a causal graph that 
describes the topological features (i.e., the connectedness) of a causal system. The 
wires in a string diagram correspond to the variables. For each variable Y ∈ V , there 
is a box of the following form:

where X1,⋯ ,Xk ∈ PA(Y) are the parents of Y. The box intuitively represents a “gen-
erating mechanism” of Y that takes PA(Y) as the input, and thus, multiple edges 
pointing to a variable are summarized by one box. Furthermore, we assume that 
an exogenous variable (with PA(Y) = � ) has its own “state” with no input, which 
is depicted by a triangle. A matching string diagram can be created by combining 
these boxes and wires in accordance with a given DAG, as illustrated in Fig. 1. Note 
that a string diagram provides a somewhat “flipped” image of the graph, wherein the 
nodes are replaced with wires and the edges with boxes.

A component of the string diagram in Fig. 1 that lacks an explicit graph counter-
part is the cloning process or copier:

,

fY

Y

X1 · · · Xk

, (1)

Fig. 1  Translation of a DAG 
(left) into a string diagram 
(right)
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which duplicates the input and returns two (or more) outputs of the same type. A 
copier is required when a fork X ← Y → Z exists in the graph. From a process per-
spective, this means that the product Y is used twice: as an input to (the generating 
mechanism of) X and an input to Z. Such an operation is taken for granted in causal 
graphs, but not in string diagrams, and must be explicitly considered as an inde-
pendent process because duplication is not always possible. For example, in quan-
tum mechanics, one state cannot be copied without being disturbed. In Sect. 3, we 
discuss how the existence of the copier is also crucial for the validity of the causal 
Markov condition.

String diagrams can be formally described by the language of the symmetric 
monoidal category. The wires and boxes in a string diagram are objects and mor-
phisms (arrows), respectively, in this category. A vertical composition of boxes cor-
responds to the composition of morphisms with a matching codomain/domain; for 
example, the composition of f ∶ A → B and g ∶ B → C yields g◦f ∶ A → C . A par-
allel composition is determined by the binary associative operations of objects and 
morphisms:

where ob(C) is a class of objects and C(A,B) is a set (“homset”) of morphisms from 
A to B of category C . The vertical and parallel compositions of morphisms f1, f2, g1 , 
and g2 must be commutative:

In the diagrammatic presentation, this simply means that the two means of compos-
ing processes

f1

g1

f2

g2

=
f1

g1

f2

g2

yield the same diagram.
Within the aforementioned categorical background, Jacobs et  al. (2019) intro-

duced a free category (also known as the free CDU category, wherein CDU stands 
for copy, discard, and uniform) over a pair of generating sets of objects and mor-
phisms.2. In particular, a causal string category ���G is constructed from a DAG 
G = (V,E) using its variable set V as the generating set of objects and the set of 
boxes with the form (1) as the generating set of morphisms. Thus, ���G contains 
everything that can be obtained by simply combining these wires and boxes (as well 

⊗ ∶ob(C) × ob(C) → ob(C),

⊗ ∶C(A,B) × C(C,D) → C(A⊗ C,B⊗ D),

(g1 ⊗ g2)◦(f1 ⊗ f2) = (g1◦f1)⊗ (g2◦f2).

2 This was later generalized by Fritz (2020) with the name Markov category.
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as other special units, such as copiers, discards, and units). This includes the string 
diagram in Fig. 1 as well as any of its parts and their suitable combinations.

2.2  Probabilistic interpretation of a string diagram

A causal model is a probabilistic interpretation of string diagrams in the free CDU 
category defined previously. This process is achieved using a functor, which is a 
systematic mapping from one category to another; in this case, from ���G to another 
CDU category with an appropriate structure (Jacobs et  al. 2019; Fritz 2020). The 
target category for discrete causal models with variables that have only finite val-
ues is �������� , wherein the objects are finite sets and morphisms f ∶ X → Y  are 
|Y| × |X|-dimensional stochastic matrices, i.e., matrices of nonnegative numbers in 
which the sum of each column is 1. A functor assigns each wire of ���G a finite set 
(representing the values of the corresponding variable) and each box a stochastic 
matrix (representing the conditional probabilities of an effect given its causes, which 
are also known as Markov kernels). Moreover, a state (a triangle with no input) of 
an exogenous wire/variable X is mapped to a morphism from object 1 of �������� . 
This morphism is a |X| × 1 stochastic matrix or vector, and thus, yields the marginal 
distribution P(X) of X.

Figure 2 depicts probabilities assigned by a causal model functor F to the bottom 
half of the string diagram shown in Fig. 1. In this case, each variable/wire is assumed 
to have two values, and thus, mapped to the two-element sets {a1, a2}, {b1, b2} , and 
{c1, c2} . The leftmost box F(fA) provides a marginal distribution P(A) in the 2 × 1 
vector format. F(cpA) interprets the copier using a (2 × 2) × 2 matrix that effec-
tively “duplicates” P(A) to yield P(A × A) . This is subsequently fed into F(fB) and 
F(fC) , which are 2 × 2 matrices that represent the conditional distributions P(B|A) 
and P(C|A), respectively. Overall, the functor yields the joint probability distribution 
P(A, B, C) that satisfies the Markov condition with the DAG B ← A → C.3 

Fig. 2  Example of a functorial assignment of values and (conditional) probabilities to a string diagram. 
The causal flow is from left to right. The structure interprets the bottom part of the string diagram in 
Fig. 1

3 In string diagrams, only the wires that extend to the end are assumed to be observed. Hence, to obtain 
a joint distribution P(A, B, C), A must be branched once more and run to the end. However, in this study, 
we ignore this convention and assume that all wires in a string diagram are observed.
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A different functor F� ∶ 𝖲𝗒𝗇G → 𝖥𝗂𝗇𝖲𝗍𝗈𝖼𝗁 leads to a different probability assign-
ment, possibly with varying numbers of variable values. In this way, any causal 
model that satisfies the Markov condition with DAG G can be represented as a func-
tor. In fact, this correspondence is one-to-one, which means that a discrete acyclic 
causal model (G, P) can be identified with a functor F ∶ 𝖲𝗒𝗇G → 𝖥𝗂𝗇𝖲𝗍𝗈𝖼𝗁 (Jacobs 
et al. 2019).

2.3  Intervention via diagram surgery

The intervention operation, which forces a target variable to assume a particular dis-
tribution, is a core feature of causal modeling. In categorical formalization, an inter-
vention is defined as a diagram surgery that replaces any appearance of the box of 
a target variable with an exogenous “state” (triangle) and discards its inputs (empty 
circles) as follows:

f

Y

X1 Xk· · ·
�→

Y

X1 Xk· · ·

,

while all other boxes and wires remain intact. For a string diagram category 
���G , this mapping defines an endofunctor 𝖼𝗎𝗍Y ∶ 𝖲𝗒𝗇G → 𝖲𝗒𝗇G . Interventions 
on other variables define similar endofunctors. A post-intervention distribution is 
obtained by combining an intervention functor with a causal model functor such that 
F ⋅ 𝖼𝗎𝗍Y ∶ 𝖲𝗒𝗇G → 𝖥𝗂𝗇𝖲𝗍𝗈𝖼𝗁.

3  Markov condition

Thus far, we have reviewed the categorical formalization of causal models in Jacobs 
et al. (2019) as a formal representation of the process-oriented perspective of cau-
sality. The advantage of considering this alternative perspective is that it provides 
insight into issues that resist proper theoretical handling in the conventional DAG 
formalism. Jacobs et al. (2019) demonstrated that the identifiability of intervention 
outcomes can easily be determined via the diagrammatic operation known as comb 
disintegration. In this and the following sections, we discuss two other issues: the 
Markov condition and abstraction of causal models.

A causal model (G,  P) with a directed graph G = (V,E) satisfies the 
global Markov condition when the joint distribution P is factorized as 
P(V) =

∏
X∈V P(X�PA(X)) , where PA(X) denotes the parents of X in G. This 

implies the local Markov condition in which each variable X is independent of its 
non-descendants given its parents PA(X) . As noted at the end of the previous sec-
tion, discrete causal model (G, P) that satisfies the Markov condition corresponds 
one-to-one with functor F ∶ 𝖲𝗒𝗇G → 𝖥𝗂𝗇𝖲𝗍𝗈𝖼𝗁 . However, this does not imply the 
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equivalence of the diagrammatic and graph-theoretic formalizations. The former can 
deal with a broader range of causal structures, including non-Markovian structures.

To see this, note that the aforementioned procedure for constructing a string dia-
gram from a causal graph is based on the assumption that each variable/wire has its 
own generating mechanism, represented by a box with only one output. However, in 
general, in process theory (or the symmetric monoidal category), boxes may have 
multiple outputs, such as

As such boxes do not arise in the construction of ���G from a DAG G, they suggest 
the possibility of causal structures that do not have graph-theoretical counterparts 
(Jacobs 2021).

Note that the left box f in (2) is not equivalent to fork Y1 ← X → Y2 ; if it were 
a fork, the Markov condition would entail Y1 ⟂ Y2|X , but nothing in the diagram-
matic representation enforces this independent relationship. The morphism f in 
(2) can be mapped by a functor to any stochastic matrix P(Y1, Y2|X) , where Y1 
and Y2 may or may not be independent given X. The independence can be assured 
with the use of a copier:

This is the correct diagrammatic rendition of the fork Y1 ← X → Y2 in a causal 
DAG, which makes Y1 and Y2 independent given X in any functorial (probabilis-
tic) interpretation of this diagram. Furthermore, because every box in this diagram 
has only one output, it can be constructed from a graph by following the procedure 
described by Jacobs et al.

Alternatively, the causal Markov condition can be understood as the require-
ment that every multi-output process, as in (2), must be a disguised dashed box, 
as in (3), and decomposable into separate mechanisms with a copier. Note that 
(3) implies that each of Y1 and Y2 can be modified without affecting the other 
using a diagrammatic surgery of box f1 or f2 , whereas such a modular interven-
tion is barred in (2). Hence, the assumption that any multi-output box, as in (2), 
is replaceable by (3) can be appropriately named the modularity condition. This 
further implies that each endogenous variable/wire has its own box/mechanism 
that is distinct from the other boxes in the diagram. In previous attempts to prove 
the Markov condition, the modularity was defined as the independent manipu-
lability of each variable, which leaves the structural equations of the other vari-
ables intact (Hausman and Woodward 1999). However, this definition does not 
readily extend to probabilistic cases, which have been the touchstone case for the 

f

Y1 Y2

X or, in general,

g

· · ·

· · · .
(2)

f1 f2

Y1 Y2

X .

(3)
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validity of the Markov condition (Cartwright 2007). The diagrammatic condition 
in (3) better captures the underlying concept of manipulability: “causes are as it 
were levers that can be used to manipulate their effects” (Hausman and Wood-
ward 1999, p. 533), and the manipulability in this sense does imply the common 
cause principle, the central as well as controversial part of the Markov condition, 
whereby multiple effects of the same cause become independent of one another 
given their common causes, provided that they are not causes or effects of one 
another.

The question, then, boils down to the validity of the modularity condition, and 
it is this point that critics have put under critical scrutiny (Cartwright 1999, 2007). 
Cartwright argued that the Markov condition fails when a cause operates probabil-
istically and illustrated her claim using a hypothetical chemical factory that gener-
ates products Y1 and pollutants Y2 with certain probabilities such that Y1 and Y2 do 
not become independent, even conditionally on the operation X of the factory (Cart-
wright 2007,  p. 107). This factory is equivalent to the process f in (2), and Cart-
wright’s claim is that it is not decomposable as in (3), because the chemical products 
and pollutants are assumed to be generated via the same mechanism.

Her argument can be paraphrased using diagrams: if f in (2) is equivalent to (3), it 
can also be rewritten as

where the empty circles are operators that “discard” each of the two outputs Y1 and 
Y2 (Fritz 2020, Lemma 12.11). This means that modularity (3) assumes that the two 
outputs Y1 and Y2 are produced by applying the same production process f to the 
input X twice and then discarding one of the outputs in each. This does appear to be 
a rather strong assumption that is unlikely to hold in situations such as the example 
of Cartwright.

Cartwright’s hypothetical chemical factory is an example of interactive forks, as 
labeled by Salmon (1980), wherein “the change in each process is produced by the 
interaction with the other process” (p. 12). In Cartwright’s example, the processes 
that generate products Y1 and pollutants Y2 supposedly interact with each other 
through chemical reactions. Salmon contrasted this type of causal mechanism with 
conjunctive forks, wherein “the dependency [among effects] arises, not because of 
any physical interaction [...] but because of special background conditions” (p. 9). 
His example comprised two identical term papers submitted by different students, 
independently plagiarizing a common source. Another more scientific example is 
a pleiotropic gene with multiple phenotypic effects, such as the abnormal �-globin 
gene, which is responsible for both sickle cell disease and malarial resistance. In 
both examples, the common causes serve as shared “background conditions,” by 
being copied (by the students or DNA transcription) each time they produce effects. 

f f

Y1 Y2

X ,

(4)
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Salmon claimed that the common cause principle holds with conjunctive forks but 
not with interactive forks.

This claim is corroborated by the categorical framework. The difference between 
two types of causal forks can be formally represented by the presence or absence of 
a copier. In a conjunctive fork, the processes that generate each of its effects operate 
independently on copied inputs (“background conditions”), as in (3). In such cases, 
the dependency between the two effects vanishes when conditioned on their com-
mon cause. However, if the fork is interactive, the production is not mediated by a 
copier, and thus, the common cause principle does not necessarily hold as discussed 
above. In this manner, the copier plays the central role in the common cause princi-
ple and the Markov condition.

4  Abstraction of causal models

The next problem we consider is that of abstracting causal models. Causal systems 
can be described at different levels of granularity, and the determination of appro-
priate macro-level causal features from micro-level measurements (such as gene 
expression data or image pixels) is a major challenge in machine learning and sci-
entific inquiries (Iwasaki and Simon 1994; Chalupka et al. 2014, 2016; Schölkopf 
et  al. 2021). The assumption of coarsening is that models at different levels must 
be consistently related despite having different sets of variables and edges for them 
to be considered to model the same phenomenon. Recent studies have proposed 
formal conditions of such an abstraction procedure that maps the components of a 
finer-grained “low-level” model to those of a coarser-grained “high-level” model 
(Rubenstein et  al. 2017; Beckers and Halpern 2019; Beckers et  al. 2020; Rischel 
2020; Rischel and Weichwald 2021; Otsuka and Saigo 2022; see Zennaro 2022 for 
review).

Coarsening may operate on variables by merging multiple micro variables into 
one macro variable, or on values by reducing multiple values of one variable to a 
fewer number of values with a lower resolution, or both (Zennaro 2022). In any 
case, this mapping must be consistent in three essential aspects of causal models for 
the resulting model to be considered an abstraction of the original model: 

1 Structural: The causal relationships of the low-level model must be preserved. In 
particular, if an edge exists between two micro variables, their macro counterparts 
must also have an edge in the matching direction.

2 Probabilistic: The probability assignment of the high-level model must be consist-
ent with that of the low-level model.

3 Interventional: The two models must make consistent predictions regarding exter-
nal interventions.

These desiderata together require that the abstraction procedure commute with 
various operations in/on a causal model. For example, probabilistic consistency 
requires that the probability of an effect calculated in the micro model “match” that 
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of its macro counterpart (Rubenstein et al. 2017; Rischel 2020; Rischel and Weich-
wald 2021). In the following sections, we demonstrate that the category-theoretic 
formulation provides a natural micro–macro translation that fulfills all of these 
requirements.

4.1  Abstraction in monoidal category

We begin with value reduction, of which two types are possible. The first is deter-
ministic transformation or supervenience, which merges multiple values of one vari-
able into fewer values with a lower resolution. In cases of discrete variables, such 
a map is obtained via a rank-deficient stochastic matrix with entries of 1 or 0. The 
second type is stochastic, which simply maps one variable to another using any sto-
chastic matrix with a size that matches the number of values of the source and target 
variables. The categorical approach handles both types in the same manner using the 
concept of natural transformation.

Suppose that we are given a causal model F ∶ 𝖲𝗒𝗇G → 𝖥𝗂𝗇𝖲𝗍𝗈𝖼𝗁 . An abstracted 
model that merges several values of its variables is represented by another functor 
F� ∶ 𝖲𝗒𝗇G → 𝖥𝗂𝗇𝖲𝗍𝗈𝖼𝗁 , such that |F�(X)| ≤ |F(X)| for any object X of ���G . Thus, 
the abstraction is a mapping between functors F ⇒ F′ that fulfills the consistency 
requirements listed previously. In category theory, such a mapping is known as a 
natural transformation. Given two causal model functors F,F� ∶ 𝖲𝗒𝗇G → 𝖥𝗂𝗇𝖲𝗍𝗈𝖼𝗁 , 
a natural transformation � ∶ F ⇒ F� is a set of morphisms in �������� (stochastic 
matrices) that make the following diagram commute for any morphism f ∶ X → Y  
in ���G:

where the upper half represents a stochastic transition along the causal edge 
f ∶ X → Y  according to the original model F, and the lower half represents the 
corresponding transition in the coarse-grained model F′ . These are the stochastic 
matrices of dimensions |F(Y)| × |F(X)| and |F�(Y)| × |F�(X)| , respectively. In con-
trast, the vertical arrows �X and �Y relate these causal flows in a consistent man-
ner. These are also stochastic matrices, the entries of which are either 1 or 0 in the 
case of deterministic translation (i.e., merging of values). The commutativity of the 
diagram indicates that the coarsening of �X ∶ F(X) → F�(X) is consistent at every 
step of the causal flow in the sense that the same marginal distribution is obtained 
regardless of whether the causal path in the original model is followed and the effect 
is transformed (clockwise path) or the cause is first transformed and its effect is then 
derived in the coarse-grained model (counterclockwise path). Thus, the existence of 
a natural transformation between the two models/functors F and F′ warrants proba-
bilistic consistency.

F (X)
F (f)−−−−→

−−−−→

F (Y )

αX



�



�αY

F ′(X)
F ′(f)

F ′(Y )

, (5)
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In general, the determination of an abstraction between two candidate models is a 
non-trivial task. However, in deterministic abstraction, there is a necessary and suf-
ficient condition for the existence of a transformation (Otsuka and Saigo 2022). This 
condition is called causal homogeneity, which intuitively requires that the micro val-
ues to be merged into the same macro value must have homogeneous causal effects 
modulo groups of the effect variable. For further details, refer to Otsuka and Saigo 
(2022). Alternatively, Rischel (2020) and Rischel and Weichwald (2021) proposed 
the use of KL-divergence to measure the non-commutativity of abstraction when 
an exact match between two models does not hold, which is expected in empirical 
measurements.

We now move on to the problem of variable reduction, wherein two or more vari-
ables in a micro model are merged into one variable in a macro model. In a way, this 
type of merging is already built into the monoidal category as vertical or horizontal 
compositions in a string diagrams. Recall that ���G , as a free symmetric monoi-
dal category, contains appropriate compositions of the generating objects and mor-
phisms. Such combined objects or morphisms can be considered “abstractions” of 
its components. For example, Fig.  3 depicts the progressive procedures by which 
the components are combined to form larger processes, which can be considered 
abstractions of their constituting processes. In this sense, the horizontal and verti-
cal compositions of the string diagram provide a means of variable reduction. The 
functorial property of a causal model then takes care of both probabilistic and inter-
ventional consistencies. In particular, the probabilistic interpretation of the merged 
processes can be calculated from those of their constituents.

However, categorical/monoidal compositions cannot be considered complete 
abstractions by themselves. Abstraction is expected to consolidate information as 
well as discard or forget some of it. Composition may serve the former but not the 
latter purpose, as the composed boxes or wires retain all details as their components. 
Moreover, this procedure does not allow one to compare two causal graphs. The 
boxes that result from compositions may have multiple outputs, in which case there 
may be no graph-theoretic counterpart with a visible abstract relationship to the 
original graph (Sect. 3). For example, no causal graph corresponding to the middle 

Fig. 3  “Abstraction” with string diagrams. In symmetric monoidal categories, objects (wires) and mor-
phisms (boxes) can be combined to form a joint process. The string diagram in the middle combines 
a copier and two parallel processes fB and fC into one process. The inverse L-shaped box on the right 
further encompasses another copier and fE , thereby constituting a process with three outputs B, C, and E 
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and right string diagrams in Fig.  3 exists that preserves the cause–effect relation-
ships in the original causal graph (Fig. 1). A different approach must be adopted to 
understand abstraction in the conventional graphical formalism.

4.2  Abstraction via graph homomorphism

To avoid the aforementioned problem, Otsuka and Saigo (2022) proposed a com-
bination of the DAG and string diagram formalisms and defined the abstraction over 
both levels. The abstraction of causal graphs requires that a target “macro” graph 
H = (VH ,EH) correspond to an original “micro” causal graph G = (VG,EG) . The cor-
respondence can be spelled out by a graph homomorphism � ∶ VG → VH such that 
if X → Y ∈ EG then �(X) → �(Y) ∈ EH . This ensures structural consistency (the first 
requirement in the aforementioned list) between G and H. The graph homomorphism � 
induces an abstraction of string diagrams as a functor � ∶ 𝖲𝗒𝗇G → 𝖲𝗒𝗇H , which sends 
an object (string) Y in ���G to object �(Y) in ���H , and boxes

where Z1 …Zl ∈ PA(�(Y))⧵�(PA(Y)) (note that the right box is a morphism in ���H
).

With this setup, a macro model functor F� ∶ 𝖲𝗒𝗇H → 𝖥𝗂𝗇𝖲𝗍𝗈𝖼𝗁 is said to be a �
-abstraction of a micro model F ∶ 𝖲𝗒𝗇G → 𝖥𝗂𝗇𝖲𝗍𝗈𝖼𝗁 if there is a natural transformation 
� ∶ F ⇒ F�� ; that is, if for any morphism f ∶ X → Y in ���G the following diagram 
commutes:

The difference from (5) is that the lower half represents the stochastic transition in 
the macro graph H. This commutativity ensures probabilistic consistency (the sec-
ond requirement) between the micro causal model F based on the DAG G and the 
macro model F′ based on another DAG H. Otsuka and Saigo (2022, Theorem 4) also 
demonstrated that the �-abstraction satisfies interventional consistency, i.e., for any 
intervention on a macro-level variable, there is a corresponding intervention on a set 
of micro variables such that these two interventions yield consistent post-interven-
tion distributions.

Figure 4 depicts the �-abstraction procedure using a simple example, where the two 
tips Y and Z of a fork Y ← X → Z are merged into one variable W with fewer val-
ues. The middle column shows the string diagram representations of the correspond-
ing DAGs on the left side. Although the lower diagram, which is obtained from the 

f

Y

X1 Xk· · ·
�→ φ(f)

φ(Y )

φ(X1) φ(Xk) Z1 Zl

· · · · · ·
,

(6)

F (X)
F (f)−−−−→ F (Y )

αX

�
�αY

F ′Φ(X)
F ′Φ(f)−−−−→ F ′Φ(Y )

. (7)
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abstraction functor � , preserves the fork structure of the original diagram (above), the 
two branches are identical. The causal models F and F′ interpret the string diagrams in 
FinStoch(right column). In this case, the “micro” variables X, Y, and Z each have three 
values, whereas the “macro” variables U and W have two. Thus, the morphisms F(fY ) 
and F(fZ) are 3 × 3 stochastic matrices, whereas F��(fY ) = F��(fZ) is 2 × 2 . The �
-abstraction consists of a 2 × 3 matrix �X and a (2 × 2) × (3 × 3) matrix 𝛼Y⊗Z that make 
the following diagram commute:

In Fig. 4, the abstraction functor � replicates the fork structure in ���H . This con-
struction is legitimate despite the lack of a fork in the DAG H, because the cor-
responding free category ���H is equipped with a copier. Moreover, the result 
of the abstraction is carried over to the DAG H. The abstracted morphism 
F��(fY ) = F��(fZ) that makes the above diagram (8) commutative is ipso facto the 
probabilistic interpretation F�(fW ) of the morphism fW ∶ U → W . This stochastic 
matrix, in turn, gives conditional probabilities P(U|W) in the DAG H, which is con-
sistent with P(Y, Z|X) in the micro model F based on the DAG G. Hence, although 

F (X)
F (cpX)−−−−−→ F (X)⊗ F (X)

F (fY )⊗F (fZ)−−−−−−−−−→ F (Y )⊗ F (Z)

αX

�
�αY ⊗Z

F ′Φ(X)
F ′(cpΦ(X))−−−−−−−→ F ′Φ(X)⊗ F ′Φ(X)

F ′Φ(fY )⊗F ′Φ(fZ)−−−−−−−−−−−−→ F ′Φ(Y )⊗ F ′Φ(Z)
∥∥∥

∥∥∥
∥∥∥

F ′(U)
F ′(cpU )−−−−−→ F ′(U)⊗ F ′(U)

F ′(fW )⊗F ′(fW )−−−−−−−−−−−→ F ′(W )⊗ F ′(W )

.

(8)

Fig. 4  Example of the reduction in both variables and values via �-abstraction, adapted from Otsuka 
and Saigo (2022). The causal flow is from left to right. The graph homomorphism � on the left column 
merges two effects Y and Z in the DAG G into a single variable W. The middle column indicates how 
the induced functor � ∶ 𝖲𝗒𝗇G → 𝖲𝗒𝗇H operates on a string diagram in ���G . The natural transformation 
(curved arrows) in the right column connects two models F and F′ in the category FinStoch 
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the fork structure remains in the target string diagram ���H , its causal model functor 
F′ , which constitutes the �-abstraction, can be interpreted as a macro-level causal 
model on the DAG H, which does not have a fork.

5  Conclusions

This study has reviewed the category-theoretic approach to causal modeling pio-
neered by Jacobs et al. (2019) and investigated its philosophical and methodological 
implications. The categorical approach represents a causal structure as a diagram-
matic network of mechanisms (boxes) connected via processes (wires), and defines 
a causal model as a functor that assigns a probabilistic interpretation to the diagram. 
This alternative perspective clarifies the logical connection between the Markov and 
modularity conditions and their dependence on the existence of a particular process 
known as the copier. Moreover, the categorical approach offers a natural method for 
abstracting causal models using the notion of natural transformation combined with 
graph homomorphism.

Although the approach in this study has focused on discrete causal models, it may 
be extended to continuous cases by considering functors to a more general category 
of measurable Markov kernels Stoch or its subcategory BorelStoch consisting of 
standard Borel spaces (Fritz 2020). Another issue that needs further investigation is 
the extension of the �-abstraction, as discussed in Section 4.2. Although this pro-
cedure enables two parallel processes or forks to be merged, as illustrated in Fig. 4, 
it cannot be used to collapse a cause-effect relationship X → Y  into a single vari-
able, because the graph homomorphism in such a case requires a self-loop in the 
codomain, which results in the graph no longer being a DAG. Here, the concept of 
�-refinement, which was recently proposed by Yin (2022), may be useful. However, 
a thorough examination of these issues is beyond the scope of the current study and 
remains a task for future research.
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